题目内容
【题目】若数列{an}前n项和为Sn , a1=a2=2,且满足Sn+Sn+1+Sn+2=3n2+6n+5,则S47等于 .
【答案】2209
【解析】解:由Sn+Sn+1+Sn+2=3n2+6n+5可得Sn﹣1+Sn+Sn+1=3(n﹣1)2+6(n﹣1)+5,
两式相减可得an+an+1+an+2=6n+3,
∴数列{an+an+1+an+2}是公差为18的等差数列,
令n=3可得a3+a4+a5=21,
∴S47=a1+a2+(a3+a4+a5)+…+(a45+a46+a47)
=4+15×21+ ×18=2209,
所以答案是:2209.
【考点精析】本题主要考查了等差数列的性质的相关知识点,需要掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.
【题目】某销售公司拟招聘一名产品推销员,有如下两种工资方案:
方案一:每月底薪2000元,每销售一件产品提成15元;
方案二:每月底薪3500元,月销售量不超过300件,没有提成,超过300件的部分每件提成30元.
(1)分别写出两种方案中推销员的月工资(单位:元)与月销售产品件数的函数关系式;
(2)从该销售公司随机选取一名推销员,对他(或她)过去两年的销售情况进行统计,得到如下统计表:
月销售产品件数 | 300 | 400 | 500 | 600 | 700 |
次数 | 2 | 4 | 9 | 5 | 4 |
把频率视为概率,分别求两种方案推销员的月工资超过11090元的概率.
【题目】我市物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对该公司的产品的销售与价格进行了统计分析,得到如下数据和散点图:
定价(元/) | 10 | 20 | 30 | 40 | 50 | 60 |
年销售 | 1150 | 643 | 424 | 262 | 165 | 86 |
14.1 | 12.9 | 12.1 | 11.1 | 10.2 | 8.9 |
图(1)为散点图,图(2)为散点图.
(Ⅰ)根据散点图判断与,与哪一对具有较强的线性相关性(不必证明);
(Ⅱ)根据(Ⅰ)的判断结果和参考数据,建立关于的回归方程(线性回归方程中的斜率和截距均保留两位有效数字);
(Ⅲ)定价为多少时,年销售额的预报值最大?(注:年销售额定价年销售)
参考数据:,,,,, ,,,
参考公式:,.