题目内容

【题目】若数列{an}前n项和为Sn , a1=a2=2,且满足Sn+Sn+1+Sn+2=3n2+6n+5,则S47等于

【答案】2209
【解析】解:由Sn+Sn+1+Sn+2=3n2+6n+5可得Sn1+Sn+Sn+1=3(n﹣1)2+6(n﹣1)+5,
两式相减可得an+an+1+an+2=6n+3,
∴数列{an+an+1+an+2}是公差为18的等差数列,
令n=3可得a3+a4+a5=21,
∴S47=a1+a2+(a3+a4+a5)+…+(a45+a46+a47
=4+15×21+ ×18=2209,
所以答案是:2209.
【考点精析】本题主要考查了等差数列的性质的相关知识点,需要掌握在等差数列{an}中,从第2项起,每一项是它相邻二项的等差中项;相隔等距离的项组成的数列是等差数列才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网