题目内容
【题目】某班要从5名男生3名女生中选出5人担任5门不同学科的课代表,请分别求出满足下列条件的方法种数.
(1)所安排的女生人数必须少于男生人数;
(2)其中的男生甲必须是课代表,但又不能担任数学课代表;
(3)女生乙必须担任语文课代表,且男生甲必须担任课代表,但又不能担任数学课代表.
【答案】(1)5520(2)3360(3)360
【解析】
(1)所安排的女生人数少于男生人数包括三种情况,
一是2个女生,
二是1个女生,
三是没有女生,
依题意得种.
(2)先选出4人,有种方法,连同甲在内,5人担任5门不同学科的课代表,甲不但任数学课代表,有种方法,∴方法数为种.
(3)由题意知甲和乙两个人确定担任课代表,需要从余下的6人中选出3个人,有种结果,女生乙必须担任语文课代表,则女生乙就不需要考虑,其余的4个人,甲不担任数学课代表,∴甲有3种选择,余下的3个人全排列共有.
综上,可知共有20×18=360种.
练习册系列答案
相关题目
【题目】王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国668个城市中有超过的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正在逐年攀升,有关数据显示,某城市从2016年到2019年产生的包装垃圾量如下表:
年份x | 2016 | 2017 | 2018 | 2019 |
包装垃圾y(万吨) | 4 | 6 | 9 | 13.5 |
(1)有下列函数模型:①;②;③.试从以上函数模型中,选择模型________(填模型序号),近似反映该城市近几年包装垃圾生产量y(万吨)与年份x的函数关系,并直接写出所选函数模型解析式;
(2)若不加以控制,任由包装垃圾如此增长下去,从哪年开始,该城市的包装垃圾将超过40万吨?(参考数据:)