题目内容
13.已知函数f(x)=2sin($\frac{π}{2}$x+$\frac{π}{5}$),若对任意的实数x,总有f(x1)≤f(x)≤f(x2),则|x1-x2|的最小值是( )A. | 2 | B. | 4 | C. | π | D. | 2π |
分析 由题意可得|x1-x2|的最小值为半个周期,再利用y=Asin(ωx+φ)的周期等于T=$\frac{2π}{ω}$,得出结论.
解答 解:由题意可得|x1-x2|的最小值为半个周期,即$\frac{T}{2}$=$\frac{π}{ω}$=$\frac{π}{\frac{π}{2}}$=2,
故选:A.
点评 本题主要考查正弦函数的图象特征,函数y=Asin(ωx+φ)的周期等于T=$\frac{2π}{ω}$,属于基础题.
练习册系列答案
相关题目
8.某学科测试,要求考生从A,B,C三道试题中任选一题作答.考试结束后,统计数据显示共有420名学生参加测试,选择A,B,C题作答的人数如表:
(Ⅰ)某教师为了解参加测试的学生答卷情况,现用分层抽样的方法从420份试卷中抽出若干试卷,其中从选择A题作答的试卷中抽出了3份,则应从选择B,C题作答的试卷中各抽出多少份?
(Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择A,B,C题作答得优的试卷分别有2份,2份,1份.现从被抽出的选择A,B,C题作答的试卷中各随机选1份,求这3份试卷都得优的概率.
试题 | A | B | C |
人数 | 180 | 120 | 120 |
(Ⅱ)若在(Ⅰ)问被抽出的试卷中,选择A,B,C题作答得优的试卷分别有2份,2份,1份.现从被抽出的选择A,B,C题作答的试卷中各随机选1份,求这3份试卷都得优的概率.
3.已知函数f(x)是定义在R上的奇函数,当x∈(0,1]时,f(x)=x+3,则f(-$\frac{1}{2}$)=( )
A. | -$\frac{3}{2}$ | B. | -$\frac{5}{2}$ | C. | -$\frac{7}{2}$ | D. | -2 |