题目内容
【题目】选修44:坐标系与参数方程
在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为,A,B两点的极坐标分别为.
(Ⅰ)求圆C的普通方程和直线的直角坐标方程;
(Ⅱ)点P是圆C上任一点,求△PAB面积的最大值.
【答案】(Ⅰ) , ; (Ⅱ) .
【解析】试题分析:(Ⅰ) 利用 将圆C的参数方程化为普通方程,由 ,将直线 的极坐标方程化为直角坐标方程;(Ⅱ)写出点P的坐标 ,由点到直线的距离求出P点到直线的距离,求出最大值,从而得到 面积的最大值.
试题解析:(Ⅰ)由得消去参数t,得,
所以圆C的普通方程为.
由,得,
即,化成直角坐标系为,所以直线l的直角坐标方程为
(Ⅱ) 化为直角坐标为在直线l上,并且,…7分
设P点的坐标为,
则P点到直线l的距离为 ,
,
所以面积的最大值是
练习册系列答案
相关题目