题目内容
【题目】已知.
(1)当时,求证:;
(2)若有三个零点时,求的范围.
【答案】(1)证明见解析;(2).
【解析】分析:(1)令,,,利用导数可得在上单调递减,,从而可得结论; (2)有三个零点等价于有三个零点,当时,当时,可得是单调函数,至多有一个零点,不符合题意,当时,利用导数研究函数的单调性,根据单调性,结合函数图象可得的范围是.
详解:(1)证明:,
令,,,
,
在上单调递减,,
所以原命题成立.
(2)由 有三个零点可得
有三个零点,
,
①当时,恒成立,可得至多有一个零点,不符合题意;
②当时,恒成立,可得至多有一个零点,不符合题意;
③当时,记得两个零点为,,不妨设,且,
时,;时,;时,
观察可得,且,
当时,;单调递增,
所以有,即,
时,,单调递减,
时,单调递减,
由(1)知,,且,所以在上有一个零点,
由,且,所以在上有一个零点,
综上可知有三个零点,
即有三个零点,
所求的范围是.
练习册系列答案
相关题目