题目内容
根据下面各数列前几项的值,写出数列的一个通项公式:
(1)
,
,
,
,
,…
(2)
,2,
,8,
,…
(3)5,55,555,5 555,55 555,…
(4)5,0,-5,0,5,0,-5,0,…
(5)1,3,7,15,31,…
(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020525211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020541223.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020557343.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020572347.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020588245.gif)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020603206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020619207.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020635226.gif)
(3)5,55,555,5 555,55 555,…
(4)5,0,-5,0,5,0,-5,0,…
(5)1,3,7,15,31,…
(1)an=
.(2)an=
.(3)an=
(10n-1).(4)an=5sin
.(5)an=2n-1
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020650529.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020666336.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020681216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020697336.gif)
(1)这是一个分数数列,其分子构成偶数数列,而分母可分解成1×3,3×5,5×7,7×9,9×11,…,每一项都是两个相邻奇数的乘积,经过组合,则所求数列的通项公式
an=
.
(2)数列的项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察:
,
,
,
,
,…,
可得通项公式an=
.
(3)联想
=10n-1,
则an=
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020681216.gif)
=
(10n-1),
即an=
(10n-1).
(4)数列的各项都具有周期性,联想基本数列1,0,-1,0,…,
则an=5sin
.
(5)∵1=2-1,3=22-1,7=23-1,…
∴an=2n-1
故所求数列的通项公式为an=2n-1.
an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020650529.gif)
(2)数列的项,有的是分数,有的是整数,可将数列的各项都统一成分数再观察:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020603206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020853210.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020619207.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020900234.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020635226.gif)
可得通项公式an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020666336.gif)
(3)联想
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130021025410.gif)
则an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130021040394.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020681216.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130021087450.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020681216.gif)
即an=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020681216.gif)
(4)数列的各项都具有周期性,联想基本数列1,0,-1,0,…,
则an=5sin
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130020697336.gif)
(5)∵1=2-1,3=22-1,7=23-1,…
∴an=2n-1
故所求数列的通项公式为an=2n-1.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目