题目内容

已知点A、B分别是椭圆
x2
a2
+
y2
b2
=1(a>b>0)
长轴的左、右端点,点C是椭圆短轴的一个端点,且离心率e=
2
2
.三角形ABC的面积为
2
,动直线l:y=kx+m与椭圆于M、N两点.
(I)求椭圆的方程;
(II)若椭圆上存在点P,满足
OM
+
ON
OP
(O为坐标原点),求λ的取值范围;
(III)在(II)的条件下,当λ=
2
时,求△MNO面积.
(I)由题意,
a2+b2
a
=
2
2
1
2
×2a×b=
2
,∴a=
2
,b=1

∴椭圆的方程为
x2
2
+y2=1

(II)y=kx+m代入椭圆方程整理可得(1+2k2)x2+4kmx+2m2-2=0.
设点M、N的坐标分别为M(x1,y1)、N(x2,y2)、P(x0,y0),则
x1+x2=-
4km
1+2k2
,x1x2=
2m2-2
1+2k2

∴y1+y2=k(x1+x2)+2m=
2m
1+2k2

(1)当m=0时,点M、N关于原点对称,则λ=0.
(2)当m≠0时,点M、N不关于原点对称,则λ≠0,
OM
+
ON
OP
,∴(x1,y1)+(x2,y2)=λ(x0,y0),
∴x1+x2=λx0,y1+y2=λy0
∴x0=-
4km
λ(1+2k2)
,y0=
2m
λ(1+2k2)

∵P在椭圆上,
[-
4km
λ(1+2k2)
]2+2[
2m
λ(1+2k2)
]2=2

化简,得4m2(1+2k2)=λ2(1+2k22
∵1+2k2≠0,
∴有4m22(1+2k2).…①…7分
又∵△=16k2m2-4(1+2k2)(2m2-2)=8(1+2k2-m2),
∴由△>0,得1+2k2>m2.…②…8分
将①、②两式,∵m≠0,∴λ2<4,
∴-2<λ<2且λ≠0.
综合(1)、(2)两种情况,得实数λ的取值范围是-2<λ<2;
(III)由题意,|MN|=
1+k2
|x1-x2|,点O到直线MN的距离d=
|m|
1+k2

∴S△MNO=
1
2
|m||x1-x2|
=
2
|m|
1+2k2-m2
1+2k2

λ=
2
时,由4m22(1+2k2)可得2m2=1+2k2
S△MNO=
2
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网