题目内容
【题目】已知椭圆:的左、右焦点分别为,点在椭圆上,且满足.
(1)求椭圆的方程;
(2)设倾斜角为的直线与交于,两点,记的面积为,求取最大值时直线的方程.
【答案】(1);(2)或.
【解析】
(1)根据点在椭圆上,且满足,结合性质 ,列出关于 、 、的方程组,求出 、,即可得椭圆的方程;(2)设直线的方程为.
联立消去,整理得,由韦达定理,利用弦长公式、点到直线距离公式以及三角形的面积公式求得,利用基本不等式可得结果.
(1)设,,根据题意的,
,,
所以,解得,
因为,①
又因为点在椭圆上,所以,②
联立①②,解得,,
所以椭圆的方程为.
(2)因为直线的倾斜角为45°,所以设直线的方程为.
联立消去,整理得
因为直线与交于两点,
所以,解得,.
设,,则
,,
从而,.
又因为点到直线的距离,
所以,
当且仅当,即,即时取等号.
所以的面积的最大值为,
此时直线的方程为或.
【题目】给出下面几种说法:
①相等向量的坐标相同;
②若向量满足,则
③若,,,是不共线的四点,则“”是“四边形为平行四边形”的充要条件;
④的充要条件是且.
其中正确说法的个数是( )
A.1B.2C.3D.4
【题目】某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).
表1:
编号\测试项目 | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
规定:每项测试合格得5分,不合格得0分.
(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.
①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;
②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;
(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):
表2:
测试项目 | 1 | 2 | 3 | 4 | 5 |
实测合格人数 | 8 | 8 | 7 | 7 | 2 |
定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:
表3:
测试项目 | 1 | 2 | 3 | 4 | 5 |
预测前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
判断本次测试的难度预估是否合理.