题目内容

【题目】已知椭圆的左右焦点分别为,点在椭圆上,且满足

(1)求椭圆的方程;

(2)设倾斜角为的直线交于两点,记的面积为,求取最大值时直线的方程.

【答案】(1);(2).

【解析】

(1)根据点在椭圆上,且满足结合性质 ,列出关于的方程组,求出即可得椭圆的方程;(2)设直线的方程为.

联立消去,整理得由韦达定理利用弦长公式、点到直线距离公式以及三角形的面积公式求得利用基本不等式可得结果.

(1)设,根据题意的,

所以,解得

因为,①

又因为点在椭圆上,所以,②

联立①②,解得

所以椭圆的方程为.

(2)因为直线的倾斜角为45°,所以设直线的方程为.

联立消去,整理得

因为直线交于两点,

所以,解得,.

,,则

从而,.

又因为点到直线的距离

所以

当且仅当,即,即时取等号.

所以的面积的最大值为

此时直线的方程为.

练习册系列答案
相关题目

【题目】某单位为促进职工业务技能提升,对该单位120名职工进行一次业务技能测试,测试项目共5项.现从中随机抽取了10名职工的测试结果,将它们编号后得到它们的统计结果如下表(表1)所示(“√”表示测试合格,“×”表示测试不合格).

表1:

编号\测试项目

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

规定:每项测试合格得5分,不合格得0分.

(1)以抽取的这10名职工合格项的项数的频率代替每名职工合格项的项数的概率.

①设抽取的这10名职工中,每名职工测试合格的项数为,根据上面的测试结果统计表,列出的分布列,并估计这120名职工的平均得分;

②假设各名职工的各项测试结果相互独立,某科室有5名职工,求这5名职工中至少有4人得分不少于20分的概率;

(2)已知在测试中,测试难度的计算公式为,其中为第项测试难度,为第项合格的人数,为参加测试的总人数.已知抽取的这10名职工每项测试合格人数及相应的实测难度如下表(表2):

表2:

测试项目

1

2

3

4

5

实测合格人数

8

8

7

7

2

定义统计量,其中为第项的实测难度,为第项的预测难度().规定:若,则称该次测试的难度预测合理,否则为不合理,测试前,预估了每个预测项目的难度,如下表(表3)所示:

表3:

测试项目

1

2

3

4

5

预测前预估难度

0.9

0.8

0.7

0.6

0.4

判断本次测试的难度预估是否合理.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网