题目内容
在直角坐标平面内,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程是ρ=4cosθ,直线l的参数方程是(t为参数).(1)求极点在直线l上的射影点P的极坐标;
(2)若M、N分别为曲线C、直线l上的动点,求|MN|的最小值.
【答案】分析:(1)由直线的参数方程设设,得向量的坐标,再利用它与l的一个方向向量垂直得到一个关于参数t的方程,解得t值,最后将P的坐标化成极坐标即可;
(2)欲求|MN|的最小值,即求出圆上一点何时到直线的距离最小,先转化为圆心到直线的距离最小值求解,结合直角坐标系下的点到直线的距离公式求解即得.
解答:解:(1)由直线的参数方程消去参数t得l:,
则l的一个方向向量为,
设,
则,
又,
则,得:,
将代入直线l的参数方程得,
化为极坐标为.
(2)ρ=4cosθ⇒ρ2=4ρcosθ,
由ρ2=x2+y2及x=ρcosθ得(x-2)2+y2=4,
设E(2,0),则E到直线l的距离,
则.
点评:本题考查点的极坐标、直线的参数方程和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
(2)欲求|MN|的最小值,即求出圆上一点何时到直线的距离最小,先转化为圆心到直线的距离最小值求解,结合直角坐标系下的点到直线的距离公式求解即得.
解答:解:(1)由直线的参数方程消去参数t得l:,
则l的一个方向向量为,
设,
则,
又,
则,得:,
将代入直线l的参数方程得,
化为极坐标为.
(2)ρ=4cosθ⇒ρ2=4ρcosθ,
由ρ2=x2+y2及x=ρcosθ得(x-2)2+y2=4,
设E(2,0),则E到直线l的距离,
则.
点评:本题考查点的极坐标、直线的参数方程和直角坐标的互化,能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别,能进行极坐标和直角坐标的互化.
练习册系列答案
相关题目