题目内容
在正方体中,如图E、F分别是 ,CD的中点,
(1)求证:;
(2)求.
(1)证明见解析;(2).
解析试题分析:(1)利用已知的线面垂直关系建立空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.(2)证明证线线垂直,只需要证明直线的方向向量垂直;(3)把向量夹角的余弦值转化为两平面法向量夹角的余弦值;(4)空间向量将空间位置关系转化为向量运算,应用的核心是要充分认识形体特征,建立恰当的坐标系,实施几何问题代数化.同时注意两点:一是正确写出点、向量的坐标,准确运算;二是空间位置关系中判定定理与性质定理条件要完备.
试题解析:解:建立如图所示的直角坐标系,(1)不妨设正方体的棱长为1,
则D(0,0,0),A(1,0,0),(0,0,1),
E(1,1,),F(0,,0),
则=(0,,-1),=(1,0,0),
=(0,1,),
=0,.
(2)(1,1,1),C(0,1,0),故=(1,0,1),=(-1,-,-),
=-1+0-=-,
,,
则cos.
.
考点:利用空间向量证明线线垂直和求夹角.
练习册系列答案
相关题目