题目内容
【题目】如图三棱柱中,侧面为菱形,.
(Ⅰ)证明:;
(Ⅱ)若,,AB=BC,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
试题分析:(1)由四边形是菱形可以得到,结合有平面,因此,根据是的中点得到.(2)由题设条件可证明,从而两两相互垂直,设为单位长,则建立如图所示空间直角坐标系,通过计算半平面的法向量的夹角来计算二面角的余弦值.
解析:(1)连接,交于点,连接,因为侧面为菱形,所以,且为及的中点,又,,所以平面.由于平面,故.又,故 .
(2)因为,且为的中点,所以.又因为,所以,故,从而两两相互垂直,为坐标原点,的方向为轴正方向,为单位长,建立如图所示空间直角坐标系.
因为,所以为等边三角形,又,则,.,,设是平面的法向量,则,即,所以可取,设是平面的法向量,则,同理可取,,所以二面角的余弦值为.