题目内容
设各项均为正实数的数列
的前
项和为
,且满足
(
).
(Ⅰ)求数列
的通项公式;
(Ⅱ)设数列
的通项公式为
(
),若
,
,
(
)成等差数列,求
和
的值;
(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列
中的三项
,
,
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644297.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902660388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902675726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902691527.png)
(Ⅰ)求数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
(Ⅱ)设数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902722476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902738678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902753497.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902769325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902785349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902800395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902816705.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902831267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902847337.png)
(Ⅲ)证明:存在无穷多个三边成等比数列且互不相似的三角形,其三边长为数列
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902878376.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902878388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902894395.png)
(Ⅰ)
;(Ⅱ)
,
,
.
(Ⅲ)作如下构造:
,
,
,其中
,它们依次为数列
中第
项,第
项,第
,显然它们成等比数列,且
,所以它们能组成三角形.
由
的任意性,知这样的三角形有无穷多个.
用反证法证明其中任意两个
和
不相似
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902909568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902925719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902941716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902956715.png)
(Ⅲ)作如下构造:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902972762.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902972867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902987763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903003518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903034631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903050628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903065665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903299614.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903003518.png)
用反证法证明其中任意两个
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903331596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903346627.png)
试题分析:(Ⅰ)由题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902675726.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903377437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903393780.png)
②-①,得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903409833.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903424235.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903455597.png)
从而
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903471539.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903487357.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903518649.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903533370.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902909568.png)
(Ⅱ)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903565765.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902769325.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902785349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902800395.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903627639.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240109036431009.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903658643.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902847337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902831267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902831267.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902925719.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902941716.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902956715.png)
(Ⅲ)作如下构造:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902972762.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902972867.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902987763.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903003518.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903034631.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903050628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903065665.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903299614.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903003518.png)
下面用反证法证明其中任意两个
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903331596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903346627.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010903331596.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904017620.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904033474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240109040481409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904064970.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904079451.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904033474.png)
点评:基础题,首先利用
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010904111485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902644457.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902738678.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902878376.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902878388.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824010902894395.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目