题目内容
如图是某直三棱柱ABC-DPQ被削去上底后的直观图与三视图的侧视图、俯视图.在直观图中,M是BD的中点.侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.
(1)求证:EM∥平面ABC;
(2)求出该几何体的体积.
(1)求证:EM∥平面ABC;
(2)求出该几何体的体积.
(1)证明:如图,取BC的中点N,连接EM,MN,AN
则MN∥CD,且MN=
CD=2
∴AE∥MN,且AE=MN
∴四边形EMNA为平行四边形
∴EM∥AN
∵EM?平面ABC,AN?平面ABC
∴EM∥平面ABC
(2)如图,连接AD,则VVABCED=VD-ABC+VD-ABE
由已知可知CD⊥面ABC,△ABC是等腰直角三角形,AB⊥AC,CD∥平面ABE,点D到面ABE的距离等于点C到面ABE的距离,即等于CA的长2.
∴VD-ABC=
×(
AB×AC)×DC=
×(
×2×2)×4=
VD-ABE=
×(
×AE×AB)×CA=
×(
×2×2)×2=
∴VABCED=
+
=4
故几何体的体积为4.
则MN∥CD,且MN=
1 |
2 |
∴AE∥MN,且AE=MN
∴四边形EMNA为平行四边形
∴EM∥AN
∵EM?平面ABC,AN?平面ABC
∴EM∥平面ABC
(2)如图,连接AD,则VVABCED=VD-ABC+VD-ABE
由已知可知CD⊥面ABC,△ABC是等腰直角三角形,AB⊥AC,CD∥平面ABE,点D到面ABE的距离等于点C到面ABE的距离,即等于CA的长2.
∴VD-ABC=
1 |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
8 |
3 |
VD-ABE=
1 |
3 |
1 |
2 |
1 |
3 |
1 |
2 |
4 |
3 |
∴VABCED=
8 |
3 |
4 |
3 |
故几何体的体积为4.
练习册系列答案
相关题目