题目内容
(2012•淮北二模)已知定义域为R的函数f(x)满足:f(4)=-3,且对任意x∈R总有f′(x)<3,则不等式f(x)<3x-15的解集为( )
分析:设F(x)=f(x)-(3x-15)=f(x)-3x+15,则F′(x)=f′(x)-3,由对任意x∈R总有f′(x)<3,知F′(x)=f′(x)-3<0,所以F(x)=f(x)-3x+15在R上是减函数,由此能够求出结果.
解答:解:设F(x)=f(x)-(3x-15)=f(x)-3x+15,
则F′(x)=f′(x)-3,
∵对任意x∈R总有f′(x)<3,
∴F′(x)=f′(x)-3<0,
∴F(x)=f(x)-3x+15在R上是减函数,
∵f(4)=-3,
∴F(4)=f(4)-3×4+15=0,
∵f(x)<3x-15,
∴F(x)=f(x)-3x+15<0,
∴x>4.
故选D.
则F′(x)=f′(x)-3,
∵对任意x∈R总有f′(x)<3,
∴F′(x)=f′(x)-3<0,
∴F(x)=f(x)-3x+15在R上是减函数,
∵f(4)=-3,
∴F(4)=f(4)-3×4+15=0,
∵f(x)<3x-15,
∴F(x)=f(x)-3x+15<0,
∴x>4.
故选D.
点评:本题考查利用导数研究函数的单调性的应用,是中档题.解题时要认真审题,仔细解答,注意合理地进行等价转化.
练习册系列答案
相关题目