题目内容

5.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2an+n,求数列{bn}的前n项和Tn

分析 (Ⅰ)利用等差数列的求和公式${S_n}=n{a_1}+\frac{1}{2}n({n-1})d$化简S7=7、S15=75可知a1=-2、d=1,进而可得结论;
(Ⅱ)通过an=n-3可知bn=$\frac{1}{8}$×2n+n,利用等差数列、等比数列的求和公式计算即得结论.

解答 解:(Ⅰ)设等差数列{an}的公差为d,
则${S_n}=n{a_1}+\frac{1}{2}n({n-1})d$,
∵S7=7,S15=75,
∴$\left\{\begin{array}{l}7{a_1}+21d=7\\ 15{a_1}+105d=75\end{array}\right.$,即 $\left\{\begin{array}{l}{a_1}+3d=1\\{a_1}+7d=5\end{array}\right.$,
解得:a1=-2,d=1,
∴an=n-3;
(Ⅱ)∵an=n-3,
∴${b_n}={2^{a_n}}+n={2^{n-3}}+n=\frac{1}{8}×{2^n}+n$,
∴Tn=b1+b2+b3+…+bn
=$(\frac{1}{8}×{2^1}+1)+(\frac{1}{8}×{2^2}+2)+(\frac{1}{8}×{2^3}+3)+…+(\frac{1}{8}×{2^n}+n)$
=$\frac{1}{8}×({2^1}+{2^2}+{2^3}+…{2^n})+(1+2+3+…n)$
=$\frac{1}{8}×({2^{n+1}}-2)+\frac{n(n+1)}{2}$
=$\frac{1}{4}×({2^n}-1)+\frac{n(n+1)}{2}$.

点评 本题考查数列的通项及前n项和,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网