题目内容
(08年舞阳一高四模理) 设F是抛物线G: 的焦点.
(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程:
(Ⅱ)设A、B为抛物线G上异于原点的两点,且满足,延长AF、BF分别交抛物线G于点C,D,求四边形ABCD面积的最小值.
解析:(I)设切点.由,知抛物线在点处的切线斜率为,故所求切线方程为.
即.
因为点在切线上.
所以,,.
所求切线方程为.
(II)设,.
由题意知,直线的斜率存在,由对称性,不妨设.
因直线过焦点,所以直线的方程为.
点的坐标满足方程组
得,
由根与系数的关系知
.
因为,所以的斜率为,从而的方程为.
同理可求得.
.
当时,等号成立.所以,四边形面积的最小值为.
练习册系列答案
相关题目