题目内容
4.设f(x,y)=(1-$\frac{y}{x}$)n,n∈N*.(1)当n=4时,求f(x,y)的展开式中二项式系数最大的项.
(2)若f(x,2)=a${\;}_{0}+\frac{{a}_{1}}{x}$+$\frac{{a}_{2}}{{x}^{2}}$+…+$\frac{{a}_{n}}{{x}^{n}}$,且a3=-160,求$\sum_{i=1}^{n}$ai;
(3)设$\frac{y}{x}$=$\sqrt{3}$,n为正偶数,若f(x,y)=A-$\sqrt{3}$B,比较$\frac{A}{B}$与1+$\frac{2}{{3}^{n}}$的大小.
分析 (1)利用展开式中二项式系数最大的项为第三项,可得结论;
(2)由a3=-160=-23•${C}_{n}^{3}$,求得n=6,再求$\sum_{i=1}^{n}$ai;
(3)设$\frac{y}{x}$=$\sqrt{3}$,n为正偶数,利用二项式展开式,即可得出结论.
解答 解:(1)当n=4时,f(x,y)=(1-$\frac{y}{x}$)4 =${C}_{4}^{0}$-${C}_{4}^{1}$•$\frac{y}{x}$+${C}_{4}^{2}$•$\frac{{y}^{2}}{{x}^{2}}$-${C}_{4}^{3}$•$\frac{{y}^{3}}{{x}^{3}}$+${C}_{4}^{4}$•$\frac{{y}^{4}}{{x}^{4}}$,
故展开式中二项式系数最大的项为第三项T3=${C}_{4}^{2}$•$\frac{{y}^{2}}{{x}^{2}}$.
(2)∵f(x,2)=(1-$\frac{2}{x}$)n=${C}_{n}^{0}$-${C}_{n}^{1}$•$\frac{2}{x}$+${C}_{n}^{2}$•${(\frac{2}{x})}^{2}$+…+(-1)n•${C}_{n}^{n}$•${(\frac{2}{x})}^{n}$=a${\;}_{0}+\frac{{a}_{1}}{x}$+$\frac{{a}_{2}}{{x}^{2}}$+…+$\frac{{a}_{n}}{{x}^{n}}$,
由a3=-160=-23•${C}_{n}^{3}$,求得n=6,
∴a0=1,a1=-12,a2=60,a3=-160,a4=240,a5=-192,a6=64,
∴$\sum_{i=1}^{n}$ai=a0+a1+a2+…+a6=1.
(3)设$\frac{y}{x}$=$\sqrt{3}$,n为正偶数,∵f(x,y)=(1-$\sqrt{3}$)n=${C}_{n}^{0}$-${C}_{n}^{1}$•$\sqrt{3}$+${C}_{n}^{2}$•${(\sqrt{3})}^{2}$+…+${C}_{n}^{n}$•${(\sqrt{3})}^{n}$
=[${C}_{n}^{0}$+3${C}_{n}^{2}$+9${C}_{n}^{4}$…+${3}^{\frac{n}{2}}$•${C}_{n}^{n}$]-[${C}_{n}^{1}$+3$\sqrt{3}$${C}_{n}^{3}$+…+${C}_{n}^{n-1}$•${(\sqrt{3})}^{n-1}$]=A-$\sqrt{3}$B,
∴A=${C}_{n}^{0}$+3${C}_{n}^{2}$+9${C}_{n}^{4}$…+${3}^{\frac{n}{2}}$•${C}_{n}^{n}$,B=${C}_{n}^{1}$+3$\sqrt{3}$${C}_{n}^{3}$+…+${C}_{n}^{n-1}$•${(\sqrt{3})}^{n-1}$,
点评 本题考查二项式定理的运用,考查二项式系数,正确运用二项式展开式是关键.
A. | 2 | B. | 1 | C. | 0 | D. | -1 |
A. | 命题“x2-1=0,则x2=1”的逆否命题为“若x≠1,则x2-1≠0”. | |
B. | “x=1”是“x2=x”成立的充分不必要条件. | |
C. | 命题“存在x0∈R,2${\;}^{{x}_{0}}$≤0”的否定是“对任意的x∈R,2x>0”. | |
D. | 若p∩q为假命题,则p,q均为假命题 |
A. | $C_{12}^4C_8^4C_4^4$ | B. | $3C_{12}^4C_8^4C_4^4$ | ||
C. | $C_{12}^4C_8^4A_3^3$ | D. | $\frac{{C_{12}^4C_8^4C_4^4}}{A_3^3}$ |
A. | (0,3] | B. | (0,2)∪(2,$\frac{4\sqrt{3}}{3}$] | C. | (0,$\frac{4\sqrt{3}}{3}$] | D. | (2,$\frac{4\sqrt{3}}{3}$] |