题目内容
【题目】已知直线l与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l的方程:
(1)过定点A(-3,4);
(2)斜率为.
【答案】(1)2x+3y-6=0或8x+3y+12=0;(2)x-6y+6=0或x-6y-6=0.
【解析】
试题(1)要求直线方程,关键是求得直线的斜率,为此设直线方程为y=k(x+3)+4,求出直线的横、纵截距,再利用直线与坐标轴围成的三角形面积为3求出k;(2)已知直线斜率,只要设直线方程为y=x+b,同样求得横截距是-6b,由|-6b·b|=6,求得b值,得直线方程.
试题解析:(1)设直线l的方程是y=k(x+3)+4,它在x轴,y轴上的截距分别是--3,3k+4,
由已知,得(3k+4)=±6,解得k1=-或k2=-.
故直线l的方程为2x+3y-6=0或8x+3y+12=0.
(2)设直线l在y轴上的截距为b,则直线l的方程是
y=x+b,它在x轴上的截距是-6b,由已知,得|-6b·b|=6,∴b=±1.
∴直线l的方程为x-6y+6=0或x-6y-6=0.
练习册系列答案
相关题目
【题目】A市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了140位市民进行调查,调查结果统计如下:
支持 | 不支持 | 合计 | |
男性市民 | 60 | ||
女性市民 | 50 | ||
合计 | 70 | 140 |
(1)根据已知数据,把表格数据填写完整;
(2)若在被调查的支持申办足球世界杯的男性市民中有5位退休老人,其中2位是教师,求从这5人中随机抽取3人至多有1人是教师的概率.