题目内容

如图1,矩形中,,,分别为边上的点,且,,将沿折起至位置(如图2所示),连结,其中.

(Ⅰ)求证:平面
(Ⅱ)求直线与平面所成角的正弦值.
(Ⅰ)详见解析;(Ⅱ) .

试题分析:(Ⅰ)三角形和三角形中,各边长度确定,故可利用勾股定理证明垂直关系
,进而由线面垂直的判定定理可证明平面;(Ⅱ)方法一(向量法):根据题意,以为坐标原点建立空间直角坐标系,再表示出相关点的坐标,再求面的法向量和直线的方向向量,其夹角余弦值的绝对值即直线和平面所成角的正弦值;方法二(综合法):过点,则易证平面,所以为直线与平面所成的角,进而在求角.
试题解析:(Ⅰ)由翻折不变性可知,,, 在中,,所以,在图中,易得,
中,,所以,又,平面,平面,所以平面.

(Ⅱ)方法一:以为原点,建立空间直角坐标系如图所示,则,,
,,所以,,, 设平面的法向量为,则,即,解得,令,得,设直线与平面所成角为,则.
所以直线与平面所成角的正弦值为.
方法二:过点,由(Ⅰ)知平面,而平面,所以,又,平面,平面,所以平面,所以为直线与平面所成的角. 在中, ,在中,由等面积公式得,在中,,所以直线与平面所成角的正弦值为.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网