题目内容
若函数f(x)为定义在R上的奇函数,且x∈(0,+∞)时,f(x)=lg(x+1),求f(x)的表达式,并画出示意图.分析:根据函数f(x)为定义域为R的奇函数,当x∈(0,+∞)时,f(x)=lg(x+1),我们根据定义域为R的奇函数的图象必过原点,则f(-x)=-f(x),即可求出函数f(x)在R上的解析式;
解答:解:①当x=0时,f(0)=0;
②当x<0时,-x>0,
∵f(x)是奇函数,
∴f(-x)=-f(x)
∴f(x)=-f(-x)=-lg(-x+1),
综上:f(x)=
其图象如下图所示:
②当x<0时,-x>0,
∵f(x)是奇函数,
∴f(-x)=-f(x)
∴f(x)=-f(-x)=-lg(-x+1),
综上:f(x)=
|
其图象如下图所示:
点评:本题考查的知识点是函数奇偶性的性质,其中根据奇函数的图象必过原点,及奇函数的定义f(-x)=-f(x),求出当x<0时的解析式,是解答本题的关键.
练习册系列答案
相关题目