题目内容

设等比数列{an}前n项和为Sn,若S3+S6=2S9
(Ⅰ)求数列的公比q;
(Ⅱ)求证:2S3,S6,S12-S6成等比数列.
【答案】分析:(Ⅰ)分公比等于1,验证数列是否成立;公比不等于1,利用前n项和公式求出公比,即可;
(Ⅱ)通过公比,推出=,即可证明数列是等比数列.
解答:解 (Ⅰ)当q=1时,S3+S6=9a1,2S9=18a1.因为a1≠0,所以S3+S6≠2S9,由题设q≠1.从而由S3+S6=2S9,化简得2q9-q6-q3=0,
因为q≠0,所以2q6-q3-1=0,即(2q3+1)(q3-1)=0.又q≠1,所以
(Ⅱ)由==
,所以=,从而2S3,S6,S12-S6成等比数列.
点评:本题是中档题,考查数列的基本性质,注意等比数列公比的讨论,等比数列的证明,考查计算能力,常考题型.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网