题目内容
【题目】已知命题实数满足(其中),命题方程表示双曲线.
(I)若,且为真命题,求实数的取值范围;
(Ⅱ)若是的必要不充分条件,求实数的取值范围.
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)将代入不等式,并解出命题中的不等式,同时求出当命题为真命题时实数的取值范围,由条件为真命题,可知这两个命题都是真命题,然后将两个范围取交集可得出实数的取值范围;
(Ⅱ)解出命题中的不等式,由是的必要不充分条件,得出命题中实数的取值范围是命题中不等式解集的真子集,然后列不等式组可求出实数的取值范围。
(Ⅰ)由 得,
若,为真时实数t的取值范围是.
由表示双曲线,得,即为真时实数的取值范围是.
若为真,则真且真,所以实数t的取值范围是
(Ⅱ)设,
是的必要不充分条件,.
当时,,有,解得;
当时,,显然,不合题意.
∴实数a的取值范围是.
【题目】据权威部门统计,高中学生眼睛近视已是普遍现象,这与每个学生是否科学用眼有很大关系.每年5月5日是全国爱眼日,我市某中学在此期间开展了一系列的用眼卫生教育活动.为了解本校学生用眼卫生情况,学校医务室随机抽取了100名学生对其进行调查,下面是根据调查结果绘制的学生不间断用眼时间(单位:分钟)的频率分布直方图,且将不间断用眼时间不低于60分钟的学生称为“不爱护眼者”,低于60分钟的学生称为“爱护眼者”.
(1)根据频率分布直方图,求这100名学生不间断用眼时间的平均数和中位数(结果精确到0.1);
(2)根据已知条件完成下面2×2列联表,并据此判断是否有99%的把握认为“不爱护眼者”与性别有关?
爱护眼者 | 不爱护眼者 | 合计 | |
男 | 45 | ||
女 | 15 | ||
合计 |
(3)在不间断用眼时间为和两组人中先按分层抽样的方法任意选取5人,再从这5人中随机抽取2人了解他们的视力状况,求这两人来自不同组别的概率.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |