题目内容

已知函数f(x)=ax2+bx+c(
13
≤a≤1)
的图象过点A(0,1),且在该点处的切线与直线2x+y+1=0平行.
(Ⅰ)求b与c的值;
(Ⅱ)设f(x)在[1,3]上的最大值与最小值分别为M(a),N(a),求F(a)=M(a)-N(a)的表达式.
分析:(I)根据函数f(x)过点A(0,1),且在该点处的切线与直线2x+y+1=0平行,建立方程组即可求出b与c的值;
(Ⅱ)对函数f(x)进行配方,得到对称轴,判定对称轴与区间[1,3]的位置关系,求出最小值,讨论对称轴与区间中值2的大小,求出最大值,然后利用分段函数表示F(a)即可.
解答:解:(Ⅰ)由A(0,1)满足f(x)解析式,∴c=1,
又f′(x)=2ax+b,x=0时f(0)=b=-2,∴b=-2
∴b=-2,c=1
(Ⅱ)f(x)=ax2-2x+1=a(x-
1
a
)2-
1
a
+1

a∈[
1
3
,1]
,∴
1
a
∈[1,3]
.∴当x=
1
a
时,N(a)=1-
1
a
(6分)
1
a
∈[1,2]
时,a∈[
1
2
,1],M(a)=f(3)=9a-5

1
a
∈[2,3]
时,a∈[
1
3
1
2
],M(a)=f(1)=a-1
(10分)
F(a)=
a+
1
a
-2,a∈[
1
3
1
2
]
9a+
1
a
-6,a∈[
1
2
,1]
(13分)
点评:本题主要考查了利用导数研究曲线上某点切线方程,利用导数求闭区间上函数的最值等有关基础知识,考查运算求解能力、推理论证能力,考查分类讨论的思想,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网