题目内容
(本小题满分16分)
已知,,且直线与曲线相切.
(1)若对内的一切实数,不等式恒成立,求实数的取值范围;
(2)当时,求最大的正整数,使得对(是自然对数的底数)内的任意个实数都有成立;
(3)求证:.
(1)设点为直线与曲线的切点,则有
. (*)
,. (**)
由(*)、(**)两式,解得,.
由整理,得,
,要使不等式恒成立,必须恒成立.
设,,
,当时,,则是增函数,
,是增函数,,.
因此,实数的取值范围是.
(2)当时,
,在上是增函数,在上的最大值为.
要对内的任意个实数都有
成立,必须使得不等式左边的最大值小于或等于右边的最小值,
当时不等式左边取得最大值,时不等式右边取得最小值.
,解得.因此,的最大值为.
(3)证明:当时,得出. 令,
化简得,
得出.
解析试题分析:(1)设点为直线与曲线的切点,则有
. (*)
,. (**)
由(*)、(**)两式,解得,.
由整理,得,
,要使不等式恒成立,必须恒成立.
设,,
,当时,,则是增函数,
,是增函数,,.
因此,实数的取值范围是.
(2)当时,
,在上是增函数,在上的最大值为.
要对内的任意个实数都有
成立,必须使得不等式左边的最大值小于或等于右边的最小值,
当时不等式左边取得最大值,时不等式右边取得最小值.
,解得.因此,的最大值为.
(3)证明:当时,根据(1)的推导有,时,,
即. 令,得,
化简得,
.
考点:本题主要考查导数的几何意义,应用导数研究函数的单调性及极值,证明不等式。
点评:典型题,本题属于导数应用中的基本问题,像涉及恒成立问题,往往通过研究函数的最值达到解题目的。证明不等式问题,往往通过构造新函数,研究其单调性及最值,而达到目的。本题涉及对数函数,要特别注意函数的定义域。
练习册系列答案
相关题目