题目内容
【题目】将直线2x-y+λ=0沿x轴向左平移1个单位,所得直线与圆x2+y2+2x-4y=0相切,则实数λ的值为( )
A.-3或7B.-2或8
C.0或10D.1或11
【答案】A
【解析】
试题根据直线平移的规律,由直线2x﹣y+λ=0沿x轴向左平移1个单位得到平移后直线的方程,然后因为此直线与圆相切得到圆心到直线的距离等于半径,利用点到直线的距离公式列出关于λ的方程,求出方程的解即可得到λ的值.
解:把圆的方程化为标准式方程得(x+1)2+(y﹣2)2=5,圆心坐标为(﹣1,2),半径为,
直线2x﹣y+λ=0沿x轴向左平移1个单位后所得的直线方程为2(x+1)﹣y+λ=0,
因为该直线与圆相切,则圆心(﹣1,2)到直线的距离d==r=,
化简得|λ﹣2|=5,即λ﹣2=5或λ﹣2=﹣5,
解得λ=﹣3或7
故选A
练习册系列答案
相关题目