题目内容
观察下列等式:
可以推测:13+23+33+…+n3=________(n∈N*,用含有n的代数式表示).
解析 第二列等式的右端分别是1×1,3×3,6×6,10×10,15×15,∵1,3,6,10,15,…第n项an与第n-1项an-1(n≥2)的差为:an-an-1=n,∴a2-a1=2,a3-a2=3,a4-a3=4,…,an-an-1=n,各式相加得,
an=a1+2+3+…+n,其中a1=1,∴an=1+2+3+…+n,即an=,∴a=n2(n+1)2.
答案 n2(n+1)2
练习册系列答案
相关题目