题目内容
(2013•泰安二模)已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明
≤
+
+…+
<
.
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明
1 |
3 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
3 |
4 |
分析:(Ⅰ)设等比数列的公比为q,利用a1,a4,a13分别是等比数列{bn}的b2,b3,b4,求出公差,即可求出数列{an}与{bn}的通项公式;
(Ⅱ)求出前n项和,可得数列通项,利用裂项法求数列的和,即可证得结论.
(Ⅱ)求出前n项和,可得数列通项,利用裂项法求数列的和,即可证得结论.
解答:(Ⅰ)解:设等比数列的公比为q,则
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4.
∴(a1+3d)2=a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
∵q=
=
=3,b1=
=1
∴bn=3n-1;
(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n
∴
=
=
(
-
)
∴
+
+…+
=
[(1-
)+(
-
)+…+(
-
)]=
(1+
-
-
)
=
-
(
+
)<
∵
+
≤
+
=
∴
-
(
+
)≥
∴
≤
+
+…+
<
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4.
∴(a1+3d)2=a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
∵q=
b3 |
b2 |
a4 |
a1 |
b2 |
q |
∴bn=3n-1;
(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n
∴
1 |
Sn |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴
1 |
S1 |
1 |
S2 |
1 |
Sn |
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
n |
1 |
n+2 |
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
=
3 |
4 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
∵
1 |
n+1 |
1 |
n+2 |
1 |
2 |
1 |
3 |
5 |
6 |
∴
3 |
4 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
1 |
3 |
∴
1 |
3 |
1 |
S1 |
1 |
S2 |
1 |
Sn |
3 |
4 |
点评:本题考查数列的通项,考查裂项法求数列的和,考查学生分析解决问题的能力,确定数列的通项是关键.
练习册系列答案
相关题目