题目内容

(2013•泰安二模)已知等差数列{an}的首项a1=3,且公差d≠0,其前n项和为Sn,且a1,a4,a13分别是等比数列{bn}的b2,b3,b4
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)证明
1
3
1
S1
+
1
S2
+…+
1
Sn
3
4
分析:(Ⅰ)设等比数列的公比为q,利用a1,a4,a13分别是等比数列{bn}的b2,b3,b4,求出公差,即可求出数列{an}与{bn}的通项公式;
(Ⅱ)求出前n项和,可得数列通项,利用裂项法求数列的和,即可证得结论.
解答:(Ⅰ)解:设等比数列的公比为q,则
∵a1,a4,a13分别是等比数列{bn}的b2,b3,b4
(a1+3d)2=a1(a1+12d)
∵a1=3,∴d2-2d=0
∴d=2或d=0(舍去)
∴an=3+2(n-1)=2n+1
q=
b3
b2
=
a4
a1
=3
b1=
b2
q
=1

∴bn=3n-1
(Ⅱ)证明:由(Ⅰ)知Sn=n2+2n
1
Sn
=
1
n(n+2)
=
1
2
1
n
-
1
n+2

1
S1
+
1
S2
+…+
1
Sn
=
1
2
[(1-
1
3
)+(
1
2
-
1
4
)+…+(
1
n
-
1
n+2
)]
=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)

=
3
4
-
1
2
(
1
n+1
+
1
n+2
)
3
4

1
n+1
+
1
n+2
1
2
+
1
3
=
5
6

3
4
-
1
2
(
1
n+1
+
1
n+2
)
1
3

1
3
1
S1
+
1
S2
+…+
1
Sn
3
4
点评:本题考查数列的通项,考查裂项法求数列的和,考查学生分析解决问题的能力,确定数列的通项是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网