题目内容
9、已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于点E,交BC的延长线于点F.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.
求证:
(1)AD=BD;
(2)DF是⊙O的切线.
分析:(1)由于AC=AB,如果连接CD,那么只要证明出CD⊥AB,根据等腰三角形三线合一的特点,我们就可以得出AD=BD,由于BC是圆的直径,那么CD⊥AB,由此可证得.
(2)连接OD,再证明OD⊥DE即可.
(2)连接OD,再证明OD⊥DE即可.
解答:解:(1)证明:连接CD,
∵BC为⊙O的直径,
∴CD⊥AB.
∵AC=BC,
∴AD=BD.
(2)证明:连接OD;
∵AD=BD,OB=OC,
∴OD∥AC.
∵DE⊥AC,
∴DF⊥OD.
∴DF是⊙O的切线.
∵BC为⊙O的直径,
∴CD⊥AB.
∵AC=BC,
∴AD=BD.
(2)证明:连接OD;
∵AD=BD,OB=OC,
∴OD∥AC.
∵DE⊥AC,
∴DF⊥OD.
∴DF是⊙O的切线.
点评:本题主要考查了切线的判定,等腰三角形的性质等知识点.要注意的是要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.
练习册系列答案
相关题目