题目内容

设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是   
【答案】分析:由使p∨q为真,P∧q为假,则p,q中必然一真一假,故我们可以根据p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m-2)x-3m+10=0无实根.求出各种情况下,m的取值范围,综合分析后,即可得到使p∨q为真,P∧q为假的实数m的取值范围.
解答:解:∵p∨q为真,P∧q为假
∴p与q一个为真,一个为假
由p:方程x2+2mx+1=0有两个不相等的正根
当P为真时,m<-1,则p为假时,m≥-1
由q:方程x2+2(m-2)x-3m+10=0无实根
当q为真时,-2<m<3,则q为假时,m≤-2,或m≥3
当p真q假时,m≤-2
当p假q真时,-1≤m<3
故使p∨q为真,P∧q为假的实数m的取值范围是(-∞,-2]∪[-1,3)
故答案为:(-∞,-2]∪[-1,3)
点评:(1)由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.假若p且q真,则p 真,q也真;若p或q真,则p,q至少有一个真;若p且q假,则p,q至少有一个假.(2)可把“p或q”为真命题转化为并集的运算;把“p且q”为真命题转化为交集的运算.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网