题目内容

已知双曲线C:
x2
a2
-
y2
b2
=1 (a>0,b>0)
的两个焦点为F1(-2,0),F2(2,0),点(3,
7
)
在双曲线C上.
(1)求双曲线C的方程;
(2)已知Q(0,2),P为双曲线C上的动点,点M满足
QM
=
MP
,求动点M的轨迹方程;
(3)过点Q(0,2)的直线l与双曲线C相交于不同的两点E、F,记O为坐标原点,若△OEF的面积为2
2
,求直线l的方程.
分析:(1)依题意,由a2+b2=4,得双曲线方程为
x2
a2
-
y2
4-a2
=1
(0<a2<4),将点(3,
7
)代入上式,能求出双曲线方程.
(2)设M(x,y)由题意M为线段PQ的中点,则P(2x,2y-2),由此能得到动点M的轨迹方程.
(3)设直线l的方程为y=kx+2,代入双曲线C的方程并整理,得(1-k2)x2-4kx-6=0.直线l与双曲线C相交于不同的两点E、F,所以
1-k2≠0
△=(-4k)2+4×6(1-k2)>0
,由此能求出满足条件的直线l有两条,其方程分别为y=
2
x+2
y=-
2
x+2
解答:解:(1)依题意,由a2+b2=4,
得双曲线方程为
x2
a2
-
y2
4-a2
=1
(0<a2<4),
将点(3,
7
)代入上式,得
9
a2
-
7
4-a2
=1

解得a2=18(舍去)或a2=2,
故所求双曲线方程为
x2
2
-
y2
2
=1.…(4分)
(2)设M(x,y),
∵点M满足
QM
=
MP

∴M为线段PQ的中点,
∵Q (0,2),
∴P(2x,2y-2),…(6分)
把点P(2x,2y-2)代入双曲线方程为
x2
2
-
y2
2
=1,
得动点M的轨迹方程:2x2-2(y-1)2=1.….(8分)
(3)依题意,可设直线l的方程为y=kx+2,
代入双曲线C的方程并整理,
得(1-k2)x2-4kx-6=0.
∵直线l与双曲线C相交于不同的两点E、F,
1-k2≠0
△=(-4k)2+4×6(1-k2)>0

∴k∈(-
3
,-1
)∪(1,
3
).…(10分)
设E(x1,y1),F(x2,y2),
则由①式得x1+x2=
4k
1-k2
,x1x2=-
6
1-k2

于是|EF|=
(x1-x2)2+(y1-y2)2

=
(1+k2)(x1-x2)2

=
1+k2
(x1+x2)2-4x1x2

=
1+k2
2
2
3-k2
|1-k2|

而原点O到直线l的距离d=
2
1+k2

∴S△OEF=
1
2
d•|EF|

=
1
2
2
1+k2
1+k2
2
2
3-k2
|1-k2|

=
2
2
3-k2
|1-k2|
.…(13分)
若S△OEF=2
2

2
2
3-k2
|1-k2|
=2
2

∴k4-k2-2=0,
解得k=±
2

满足②.故满足条件的直线l有两条,
其方程分别为y=
2
x+2
y=-
2
x+2
.…(16分)
点评:本题主要考查双曲线标准方程,简单几何性质,直线与双曲线的位置关系,双曲线的简单性质等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.易错点是计算量大,容易出错.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网