ÌâÄ¿ÄÚÈÝ
ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬ÇÒ2Sn=3n3+n£¨n¡ÊN*£©£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÒÑÖªÊýÁÐ{bn}Âú×ãan(2bn-1)=1£®Tn=b1+b2+¡+bn£®
£¨i£©Ö¤Ã÷£º3Tn£¾log2
(n¡ÊN*)£»
£¨ii£©ÊÇ·ñ´æÔÚ×î´óµÄÕýÊýk£¬Ê¹²»µÈʽ3Tn¡Ýlog2k+log2an+1£¬¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ökµÄ×î´óÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Çó{an}µÄͨÏʽ£»
£¨2£©ÒÑÖªÊýÁÐ{bn}Âú×ãan(2bn-1)=1£®Tn=b1+b2+¡+bn£®
£¨i£©Ö¤Ã÷£º3Tn£¾log2
3n+2 | 2 |
£¨ii£©ÊÇ·ñ´æÔÚ×î´óµÄÕýÊýk£¬Ê¹²»µÈʽ3Tn¡Ýlog2k+log2an+1£¬¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£¿Èô´æÔÚ£¬Çó³ökµÄ×î´óÖµ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©n¡Ý2ʱ£¬an=Sn-Sn-1=3n-1£¬ÓÉ´ËÄÜÇó³ö{an}µÄͨÏʽ£®
£¨2£©ÓÉbn=log2
£¬ÖªTn=log2
+log2
+¡+log2
=log2(
¡Á
¡Á¡¡Á
)£®ÒªÖ¤£º3Tn£¾log2
£¬¼´Ö¤£º3log2(
¡Á
¡Á¡¡Á
)£¾log2
£¬ÓÉ´ËÈëÊÖÄܹ»Ê¹Ô²»µÈʽµÃÖ¤£®
£¨3£©¼ÙÉè´æÔÚ×î´óÕýÊýk£¬Ê¹²»µÈʽ³ÉÁ¢£®¼´3Tn¡Ýlog2k£¨3n+2£©£¬ËùÒÔTn¡Ýlog2
£¬ÓÉ´ËÄܹ»Ö¤Ã÷´æÔÚ×î´óÕýÊýk£®
£¨2£©ÓÉbn=log2
3n |
3n-1 |
3 |
2 |
6 |
5 |
3n |
3n-1 |
3 |
2 |
6 |
5 |
3n |
3n-1 |
3n+2 |
2 |
3 |
2 |
6 |
5 |
3n |
3n-1 |
3n+2 |
2 |
£¨3£©¼ÙÉè´æÔÚ×î´óÕýÊýk£¬Ê¹²»µÈʽ³ÉÁ¢£®¼´3Tn¡Ýlog2k£¨3n+2£©£¬ËùÒÔTn¡Ýlog2
3 | k(3n+2) |
½â´ð£º½â£º£¨1£©n¡Ý2ʱ£¬an=Sn-Sn-1=3n-1£¬
¡ßn=1ʱ£¬a1=S1=2Âú×ãÉÏʽ
¡àan=3n-1£¨n¡ÊN+£©£®
£¨2£©ÓÉ£¨1£©µÃ£ºbn=log2
£¬
¡àTn=log2
+log2
+¡+log2
=log2(
¡Á
¡Á¡¡Á
)£®
ÒªÖ¤£º3Tn£¾log2
¼´Ö¤£º3log2(
¡Á
¡Á¡¡Á
)£¾log2
£¬
¼´£º£¨
¡Á
¡Á¡¡Á
)33£¾
£¬
Áîg(n)=
£¬
¡ß
=
-
=
£¾
=1£¬
¡àg£¨n+1£©£¾g£¨n£©£®¼´g£¨n£©ÎªÔö£®´Ó¶øg(n)£¾g(1)=
£¾1£¬
¡à(
¡Á
¡Á¡¡Á
)3£¾
´Ó¶øÔ²»µÈʽµÃÖ¤£®
£¨3£©¼ÙÉè´æÔÚ×î´óÕýÊýk£¬Ê¹²»µÈʽ³ÉÁ¢£®¼´3Tn¡Ýlog2k£¨3n+2£©£¬
¡àTn¡Ýlog2
£¬
¡àlog2(
¡Á
¡Á¡¡Á
)¡Ýlog2
£¬
¡à
¡Ü
£¬
ÓÉ£¨2£©Öªg(n)=
ΪÔö£®
¡à
¡Ü
£¬
¡à0£¼k¡Ü
=
£¬
¡à´æÔÚ×î´óÕýÊýk=
£®
¡ßn=1ʱ£¬a1=S1=2Âú×ãÉÏʽ
¡àan=3n-1£¨n¡ÊN+£©£®
£¨2£©ÓÉ£¨1£©µÃ£ºbn=log2
3n |
3n-1 |
¡àTn=log2
3 |
2 |
6 |
5 |
3n |
3n-1 |
=log2(
3 |
2 |
6 |
5 |
3n |
3n-1 |
ÒªÖ¤£º3Tn£¾log2
3n+2 |
2 |
¼´Ö¤£º3log2(
3 |
2 |
6 |
5 |
3n |
3n-1 |
3n+2 |
2 |
¼´£º£¨
3 |
2 |
6 |
5 |
3n |
3n-1 |
3n+2 |
2 |
Áîg(n)=
(
| ||||||
|
¡ß
g(n+1) |
g(n) |
(
| ||||||||
|
| ||||||
(
|
=
(3n+3)3 |
(3n+2)2•(3n+5) |
(3n+3)3 | ||
(
|
¡àg£¨n+1£©£¾g£¨n£©£®¼´g£¨n£©ÎªÔö£®´Ó¶øg(n)£¾g(1)=
(
| ||
|
¡à(
3 |
2 |
6 |
5 |
3n |
3n-1 |
3n+2 |
2 |
£¨3£©¼ÙÉè´æÔÚ×î´óÕýÊýk£¬Ê¹²»µÈʽ³ÉÁ¢£®¼´3Tn¡Ýlog2k£¨3n+2£©£¬
¡àTn¡Ýlog2
3 | k(3n+2) |
¡àlog2(
3 |
2 |
6 |
5 |
3n |
3n-1 |
3 | k(3n+2) |
¡à
3 | k |
| ||||||
|
ÓÉ£¨2£©Öªg(n)=
(
| ||||||
|
¡à
3 | k |
| |||
|
¡à0£¼k¡Ü
| ||
5 |
27 |
40 |
¡à´æÔÚ×î´óÕýÊýk=
27 |
40 |
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬Ö¤Ã÷3Tn£¾log2
(n¡ÊN*)ºÍÅжÏÊÇ·ñ´æÔÚ×î´óµÄÕýÊýk£¬Ê¹²»µÈʽ3Tn¡Ýlog2k+log2an+1£¬¶ÔÒ»ÇÐn¡ÊN*¶¼³ÉÁ¢£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâÍÚ¾òÌâÉèÖеÄÒþº¬Ìõ¼þ£¬ºÏÀíµØ½øÐеȼÛת»¯£®
3n+2 |
2 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÑÖªÊýÁÐ{an}µÄÇ°nÏîºÍSn=an2+bn£¨a¡¢b¡ÊR£©£¬ÇÒS25=100£¬Ôòa12+a14µÈÓÚ£¨¡¡¡¡£©
A¡¢16 | B¡¢8 | C¡¢4 | D¡¢²»È·¶¨ |