题目内容
【题目】已知函数 .
(Ⅰ)讨论的单调性;
(Ⅱ)设,证明:当时, ;
(Ⅲ)设是的两个零点,证明 .
【答案】(Ⅰ)在上单调递减,在上单调递增;(Ⅱ)当时,;(Ⅲ)证明过程见解析
【解析】试题分析:(Ⅰ)求导,并判断导数的符号,分别讨论的取值,确定函数的单调区间.
(Ⅱ)构造函数,利用导数求函数当时的最大值小于零即可.
(Ⅲ)由(Ⅱ)得 ,从而,于是,由(Ⅰ)知, .
试题解析:(Ⅰ)的定义域为 ,
求导数,得 ,
若 ,则,此时在上单调递增,
若 ,则由得,当时, ,当时, ,
此时在上单调递减,在上单调递增.
(Ⅱ)令,则
.
求导数,得 ,
当时,,在上是减函数.
而, ,
故当时,
(Ⅲ)由(Ⅰ)可知,当时,函数至多有一个零点,
故,从而的最小值为,且,
不妨设,则, ,
由(Ⅱ)得 ,
从而,于是,
由(Ⅰ)知, .
点晴:本题考查函数导数的单调性.不等式比较大小,函数的零点问题:在(Ⅰ)中通过求导,并判断导数的符号,分别讨论的取值,确定函数的单调区间.(Ⅱ)通过构造函数,把不等式证明问题转化为函数求最值问题,求函数当时的最大值小于零即可.(Ⅲ)要充分利用(Ⅰ)(Ⅱ)问的结论.
练习册系列答案
相关题目
【题目】环境监测中心监测我市空气质量,每天都要记录空气质量指数(指数采取10分制,保留一位小数),现随机抽取20天的指数(见下表),将指数不低于视为当天空气质量优良.
天数 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
空气质量指数 |
天数 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
空气质量指数 |
(1)求从这20天随机抽取3天,至少有2天空气质量为优良的概率;
(2)以这20天的数据估计我市总体空气质量(天数很多),若从我市总体空气质量指数中随机抽取3天的指数,用表示抽到空气质量为优良的天数,求的分布列及数学期望.