题目内容

已知向量
OA
=(cosα,sinα)
(α∈[-π,0]).向量m=(2,1),n=(0,-
5
)
,且m⊥(
OA
-
n).
(Ⅰ)求向量
OA

(Ⅱ)若cos(β-π)=
2
10
,0<β<π,求cos(2α-β).
分析:(Ⅰ)根据已知,把
OA
=(cosα,sinα)
,代入
m
⊥(
OA
-
n
)
中,然后再根据sin2α+cos2α=1联立即可求出结果.
(Ⅱ)根据cos(β-π)=
2
10
,分别求出sinβ,cosβ的值,然后根据两角和差的余弦公式,求出cos(2α-β).
解答:解:(Ⅰ)∵
OA
=(cosα,sinα)

OA
-
n
=(cosα,sinα+
5
)

m
⊥(
OA
-
n
)
,∴
m
•(
OA
-
n
)=0

2cosα+(sinα+
5
)=0
           ①
又sin2α+cos2α=1                      ②
由①②联立方程解得,
cosα=-
2
5
5
sinα=-
5
5

OA
=(-
2
5
5
,-
5
5
)


(Ⅱ)∵cos(β-π)=
2
10

cosβ=-
2
10
,0<β<π,
sinβ=
7
2
10
π
2
<β<π

又∵sin2α=2sinαcosα=2×(-
5
5
)×(-
2
5
5
)=
4
5

cos2α=2cos2α-1=2×
4
5
-1=
3
5

cos(2α-β)=cos2αcosβ+sin2αsinβ=
3
5
×(-
2
10
)+
4
5
×
7
2
10
=
25
2
50
=
2
2
点评:本题考查三角函数的基本关系,诱导公式,以及两角和差的正弦余弦公式的利用,其中涉及到向量的垂直关系.属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网