题目内容
(本题12分)一个质地均匀的正四面体的四个面上分别标示着数字1、2、3、4,一个质地均匀的骰子(正方体)的六个面上分别标示数字1、2、3、4、5、6,先后抛掷一次正四面体和骰子。
⑴列举出全部基本事件;
⑵求被压在底部的两个数字之和小于5的概率;
⑶求正四面体上被压住的数字不小于骰子上被压住的数字的概率。
⑴
每个基本事件出现的可能性相同.
⑵ .
⑶ .
解析试题分析:⑴ 用数对标示正四面体上和骰子上被压住的两个数字,列举所有基本事件如下:
每个基本事件出现的可能性相同. …………………………4分
⑵ 由⑴知基本事件总数24.
设“被压在底部的两个数字之和小于5”为事件,则包括、、、 、 、等6个基本事件,事件发生的概率. ………8分
⑶ 设“正四面体上被压住的数字不小于骰子上被压住的数字”为事件,则包括、、、、、、、、、等10个基本事件,事件发生的概率. ……………………………………12分
考点:本题主要考查古典概型概率的计算。
点评:基础题,古典概型概率的计算,公式明确,关键是计算基本事件数要准确,可借助于“树图法”“坐标法”。
下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据。
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(2)已知该厂技改前100吨甲产品生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考公式:)
(本题12分)为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表
小麦产量 | |||||
频数 | 10 | 35 | 40 | 10 | 5 |
小麦产量 | ||||
频数 | 15 | 50 | 30 | 5 |
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
| 小麦产量小于20kg | 小麦产量不小于20kg | 合计 |
施用新化肥 | | ||
不施用新化肥 | | ||
合计 | | |
附:
0.050 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
(本题满分12分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
| 文艺节目 | 新闻节目 | 总计 |
20至40岁 | 40 | 10 | 50 |
大于40岁 | 20 | 30 | 50 |
总计 | 60 | 40 | 100 |
(2)20至40岁,大于40岁中各抽取1名观众,求两人恰好都收看文艺节目的概率.
P(k2>k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |