题目内容
【题目】已知函数
(1)若函数有零点,求实数的取值范围;
(2)证明:当时,
【答案】(I);(II)详见解析.
【解析】试题分析:(I)对函数求导,可得函数单调性,并求得函数的最小值,若函数有零点,函数最小值小于零且在定义域范围有函数值大于零,解不等式可得的范围;(Ⅱ)将代入不等式化简为,可构造函数 利用导数判断单调性可知在 条件下 最小值为 , 最大值为.可证命题.
试题解析:
(Ⅰ)法1: 函数的定义域为.
由, 得.
因为,则时, ; 时, .
所以函数在上单调递减, 在上单调递增.
当时, .
当
所以实数的取值范围为.
法2:函数的定义域为.
由, 得.
令,则.
当时, ; 当时, .
所以函数在上单调递增, 在上单调递减.
故时, 函数取得最大值.
因而函数有零点, 则.
所以实数的取值范围为.
(Ⅱ) 要证明当时, ,
即证明当时, , 即.
令, 则.
当时, ;当时, .
所以函数在上单调递减, 在上单调递增.
当时, .
于是,当时, ①
令, 则.
当时, ;当时, .
所以函数
当时, .
于是, 当时, ②
显然, 不等式①、②中的等号不能同时成立.
故当时, .
【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:
交强险浮动因素和浮动费率比率表 | ||
浮动因素 | 浮动比率 | |
上一个年度未发生有责任道路交通事故 | 下浮10% | |
上两个年度未发生有责任道路交通事故 | 下浮20% | |
上三个及以上年度未发生有责任道路交通事故 | 下浮30% | |
上一个年度发生一次有责任不涉及死亡的道路交通事故 | 0% | |
上一个年度发生两次及两次以上有责任道路交通事故 | 上浮10% | |
上一个年度发生有责任道路交通死亡事故 | 上浮30% |
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型 | ||||||
数量 | 10 | 5 | 5 | 20 | 15 | 5 |
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定, ,记为某同学家的一辆该品牌车在第四年续保时的费用,求的分布列与数学期望;(数学期望值保留到个位数字)
(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
【题目】2017年1月1日,作为贵阳市打造“千园之城”27个示范性公园之一的泉湖公园正式开园.元旦期间,为了活跃气氛,主办方设置了水上挑战项目向全体市民开放.现从到公园游览的市民中随机抽取了60名男生和40名女生共100人进行调查,统计出100名市民中愿意接受挑战和不愿意接受挑战的男女生比例情况,具体数据如图表:
(1)根据条件完成下列
列联表,并判断是否在犯错误的概率不超过1%的情况下愿意接受挑战与性别有关?
愿意 | 不愿意 | 总计 | |
男生 | |||
女生 | |||
总计 |
(2)水上挑战项目共有两关,主办方规定:挑战过程依次进行,每一关都有两次机会挑战,通过第一关后才有资格参与第二关的挑战,若甲参加每一关的每一次挑战通过的概率均为
,记甲通过的关数为
,求
的分布列和数学期望.
参考公式与数据:
0.1 | 0.05 | 0.025 | 0.01 | |
2.706 | 3.841 | 5.024 | 6.635 |
.