题目内容
已知椭圆与圆,若在椭圆上存在点P,使得由点P所作的圆的两条切线互相垂直,则椭圆的离心率的取值范围是( )
A. | B. | C. | D. |
C
解析试题分析:椭圆上长轴端点向圆外两条切线PA,PB,则两切线形成的角最小,若椭圆上存在点P令切线互相垂直,则只需,即,∴,解得,
∴,即,而,∴,即.
考点:椭圆与圆的标准方程及其性质.
练习册系列答案
相关题目
已知F1,F2是双曲线(a>0,b>0)的左右两个焦点,过点F1作垂直于x轴的直线与双曲线的两条渐近线分别交于A,B两点,△ABF2是锐角三角形,则该双曲线的离心率e的取值范围是( )
A.(1,2) | B.(1,) | C.(1,5) | D.(,+) |
设P是双曲线上一点,该双曲线的一条渐近线方程是, 分别是双曲线的左、右焦点,若,则等于( )
A.2 | B.18 | C.2或18 | D.16 |
已知F为双曲线C:的左焦点,P,Q为C上的点.若PQ的长等于虚轴长的2倍,点A(5,0)在线段PQ上,则△PQF的周长为( )
A.11 | B.22 | C.33 | D.44 |