ÌâÄ¿ÄÚÈÝ
8£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=-2+sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}5x=1-4t\\ 5y=18+3t\end{array}\right.$£¨tΪ²ÎÊý£©£®£¨1£©ÒÔ×ø±êÔµãΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬°ÑÇúÏßC1µÄ²ÎÊý·½³Ì»¯Îª¼«×ø±ê·½³Ì£»
£¨2£©ÉèµãPΪÇúÏßC2ÉϵĶ¯µã£¬¹ýµãP×÷ÇúÏßC1µÄÁ½ÌõÇÐÏߣ¬ÇóÕâÁ½ÌõÇÐÏßËù³É½ÇµÄÓàÏÒÖµµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨1£©Ê×ÏÈ°ÑÇúÏßC1µÄ²ÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬ÔÙת»¯³É¼«×ø±ê·½³Ì£®
£¨2£©Çó³ö¹ýµãP×÷ÇúÏßC1µÄÁ½ÌõÇÐÏߣ¬ÇÐÏß³¤l¡Ý$\sqrt{15}$£¬¼´¿ÉÇóÕâÁ½ÌõÇÐÏßËù³É½ÇµÄÓàÏÒÖµµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=-2+sin¦Á}\end{array}\right.$£¬£¨tΪ²ÎÊý£©£¬
ת»¯³ÉÖ±½Ç×ø±ê·½³ÌΪ£º£¨x-1£©2+£¨y+2£©2=1£®
¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦È£¬´úÈëÖ±½Ç×ø±ê·½³Ìת»¯Îª£º¦Ñ2-2¦Ñcos¦È+4¦Ñsin¦È+4=0£®
£¨2£©£¨x-1£©2+£¨y+2£©2=1µÄÔ²ÐÄ×ø±êΪ£¨1£¬-2£©£¬°ë¾¶Îª1£¬
ÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}5x=1-4t\\ 5y=18+3t\end{array}\right.$£¬ÆÕͨ·½³ÌΪ3x+4y-15=0£¬
¡àÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{|3-8-15|}{5}$=4£¬
¡à¹ýµãP×÷ÇúÏßC1µÄÁ½ÌõÇÐÏߣ¬ÇÐÏß³¤l¡Ý$\sqrt{15}$£¬
ÉèÁ½ÌõÇÐÏßËù³É½ÇΪ2¦Á£¬Ôòcos¦Á¡Ý$\frac{\sqrt{15}}{4}$£¬
¡àcos2¦Á¡Ý$\frac{7}{8}$£¬
¡àÕâÁ½ÌõÇÐÏßËù³É½ÇµÄÓàÏÒÖµµÄÈ¡Öµ·¶Î§ÊÇ[0£¬arccos$\frac{7}{8}$]£®
µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º²ÎÊý·½³ÌÓ뼫×ø±ê·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬Ö±½Ç×ø±êÓ뼫×ø±êÖ®¼äµÄ»¥»¯£®
Èç¹ûÄС¢Å®Éú²ÉÓÃÏàͬµÄ´ï±ê±ê×¼£¬ÄС¢Å®Éú´ï±êÇé¿öÈçÏÂ±í£º
ÄÐ | Å® | ×Ü¼Æ | |
´ï±ê | a=24 | b=6 | 30 |
²»´ï±ê | c= | d=12 | 20 |
×Ü¼Æ | 32 | 18 | n=50 |
¸½£ºk2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨a+c£©£¨b+d£©}$
P£¨K2¡Ýk0£© | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 5.024 | 6.635 | 7.879 | 10.828 |