ÌâÄ¿ÄÚÈÝ

Èçͼ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬BC=2£¬BC1=
2
£¬CC1=
2
£¬¡÷ABCÊÇÒÔBCΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬Æ½ÃæABC¡ÍƽÃæBCC1B1£¬EΪÀâABµÄÖе㣬FΪCC1ÉϵĶ¯µã£®
£¨¢ñ£©ÔÚÏ߶ÎCC1ÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃEF¡ÎƽÃæA1BC1£¿Èô´æÔÚ£¬È·¶¨ÆäλÖã»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨¢ò£©ÔÚÏ߶ÎCC1ÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃEF¡ÍBB1£¿Èô´æÔÚ£¬È·¶¨ÆäλÖã»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨ III£©µ±FΪCC1µÄÖеãʱ£¬ÈôAC¡ÜCC1£¬ÇÒEFÓëƽÃæACC1A1Ëù³ÉµÄ½ÇµÄÕýÏÒֵΪ
2
3
£¬Çó¶þÃæ½ÇC-AA1-BµÄÓàÏÒÖµ£®
·ÖÎö£º£¨I£©´æÔÚ£¬Öе㣬ÀûÓÃÏßÃæƽÐеÄÅж¨¶¨Àí¿ÉµÃ½áÂÛ£»
£¨¢ò£©´æÔÚ£¬µ±FÔÚ¿¿¶ËµãC1Ò»²àµÄËĵȷֵãʱ£®
£¨III£©½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬È·¶¨Æ½ÃæACC1A1¡¢Æ½ÃæAA1BµÄÒ»¸ö·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨I£©´æÔÚ£¬Öе㣮
È¡A1BµÄÖеãD£¬Á¬½ÓED£¬DC1£¬ÔòED¡ÎAA1£¬ED=
1
2
AA1£¬
¡ßFΪCC1ÉϵĶ¯µã£¬¡àED¡ÎFC1£¬ED=FC1£¬
¡àËıßÐÎDEFC1ÊÇƽÐÐËıßÐÎ
¡àEF¡ÎDC1£¬
¡àEF?ƽÃæA1BC1£¬DC1?ƽÃæA1BC1£¬
¡àEF¡ÎƽÃæA1BC1£»
£¨¢ò£©´æÔÚ£¬µ±FÔÚ¿¿¶ËµãC1Ò»²àµÄËĵȷֵãʱ£®½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵ£¬ÉèA£¨0£¬0£¬b£©£¬F£¨x£¬1-x£¬0£©£¬ÔòE£¨-
1
2
£¬0£¬
b
2
£©£¬¡à
EF
=(x+
1
2
£¬1-x£¬
b
2
)
£¬¡ß
CC1
=(-1£¬1£¬0)
£¬
EF
¡Í
CC1
£¬¡àx=
1
4
£®
£¨III£©ÉèƽÃæACC1A1µÄÒ»¸ö·¨ÏòÁ¿Îª
n
1
=(x1£¬y1£¬z1)

ÓÖ
CC1
=(-1£¬1£¬0)£¬
AC
=(1£¬0£¬-b)

Ôò
CC1
n1
=0
A1C1
n1
=0
£¬
-x1+y1=0
x1-bz1=0
£¬Áîz1=1£¬Ôò
n
1
=(b£¬b£¬1)

ÓÖ
EF
=(1£¬
1
2
£¬-
b
2
)

¡à|cos£¼
n1
£¬
EF
£¾|=
|
n1
EF
|
|
n
|•|
EF
|
=
b
2b2+1
5
4
+
b2
4
=
2
3
¡­£¨6·Ö£©
½âµÃb=1£¬»òb=
10
2
£¬
¡ßAC¡ÜCC1¡àb=1
¡à
n
1
=(1£¬1£¬1)

ͬÀí¿ÉÇóµÃƽÃæAA1BµÄÒ»¸ö·¨ÏòÁ¿
n2
=(1£¬1£¬-1)

¡àcos£¼
n1
£¬
n2
£¾=
n1
n2
|
n1
|•|
n2
|
=
1
3

ÓÖ¶þÃæ½ÇC-AA1-BΪÈñ¶þÃæ½Ç£¬¹ÊÓàÏÒֵΪ
1
3
£®
µãÆÀ£º±¾Ì⿼²éÏßÃæƽÐУ¬¿¼²éÃæÃæ½Ç£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø