ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÈýÀâÖùABC-A1B1C1ÖУ¬BC=2£¬BC1=
£¬CC1=
£¬¡÷ABCÊÇÒÔBCΪµ×±ßµÄµÈÑüÈý½ÇÐΣ¬Æ½ÃæABC¡ÍƽÃæBCC1B1£¬EΪÀâABµÄÖе㣬FΪCC1ÉϵĶ¯µã£®
£¨¢ñ£©ÔÚÏ߶ÎCC1ÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃEF¡ÎƽÃæA1BC1£¿Èô´æÔÚ£¬È·¶¨ÆäλÖã»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨¢ò£©ÔÚÏ߶ÎCC1ÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃEF¡ÍBB1£¿Èô´æÔÚ£¬È·¶¨ÆäλÖã»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨ III£©µ±FΪCC1µÄÖеãʱ£¬ÈôAC¡ÜCC1£¬ÇÒEFÓëƽÃæACC1A1Ëù³ÉµÄ½ÇµÄÕýÏÒֵΪ
£¬Çó¶þÃæ½ÇC-AA1-BµÄÓàÏÒÖµ£®
2 |
2 |
£¨¢ñ£©ÔÚÏ߶ÎCC1ÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃEF¡ÎƽÃæA1BC1£¿Èô´æÔÚ£¬È·¶¨ÆäλÖã»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨¢ò£©ÔÚÏ߶ÎCC1ÉÏÊÇ·ñ´æÔÚÒ»µãF£¬Ê¹µÃEF¡ÍBB1£¿Èô´æÔÚ£¬È·¶¨ÆäλÖã»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨ III£©µ±FΪCC1µÄÖеãʱ£¬ÈôAC¡ÜCC1£¬ÇÒEFÓëƽÃæACC1A1Ëù³ÉµÄ½ÇµÄÕýÏÒֵΪ
| ||
3 |
·ÖÎö£º£¨I£©´æÔÚ£¬Öе㣬ÀûÓÃÏßÃæƽÐеÄÅж¨¶¨Àí¿ÉµÃ½áÂÛ£»
£¨¢ò£©´æÔÚ£¬µ±FÔÚ¿¿¶ËµãC1Ò»²àµÄËĵȷֵãʱ£®
£¨III£©½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬È·¶¨Æ½ÃæACC1A1¡¢Æ½ÃæAA1BµÄÒ»¸ö·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬¼´¿ÉµÃµ½½áÂÛ£®
£¨¢ò£©´æÔÚ£¬µ±FÔÚ¿¿¶ËµãC1Ò»²àµÄËĵȷֵãʱ£®
£¨III£©½¨Á¢¿Õ¼äÖ±½Ç×ø±êϵ£¬È·¶¨Æ½ÃæACC1A1¡¢Æ½ÃæAA1BµÄÒ»¸ö·¨ÏòÁ¿£¬ÀûÓÃÏòÁ¿µÄ¼Ð½Ç¹«Ê½£¬¼´¿ÉµÃµ½½áÂÛ£®
½â´ð£º½â£º£¨I£©´æÔÚ£¬Öе㣮
È¡A1BµÄÖеãD£¬Á¬½ÓED£¬DC1£¬ÔòED¡ÎAA1£¬ED=
AA1£¬
¡ßFΪCC1ÉϵĶ¯µã£¬¡àED¡ÎFC1£¬ED=FC1£¬
¡àËıßÐÎDEFC1ÊÇƽÐÐËıßÐÎ
¡àEF¡ÎDC1£¬
¡àEF?ƽÃæA1BC1£¬DC1?ƽÃæA1BC1£¬
¡àEF¡ÎƽÃæA1BC1£»
£¨¢ò£©´æÔÚ£¬µ±FÔÚ¿¿¶ËµãC1Ò»²àµÄËĵȷֵãʱ£®½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵ£¬ÉèA£¨0£¬0£¬b£©£¬F£¨x£¬1-x£¬0£©£¬ÔòE£¨-
£¬0£¬
£©£¬¡à
=(x+
£¬1-x£¬
)£¬¡ß
=(-1£¬1£¬0)£¬
¡Í
£¬¡àx=
£®
£¨III£©ÉèƽÃæACC1A1µÄÒ»¸ö·¨ÏòÁ¿Îª
1=(x1£¬y1£¬z1)
ÓÖ
=(-1£¬1£¬0)£¬
=(1£¬0£¬-b)
Ôò
£¬
£¬Áîz1=1£¬Ôò
1=(b£¬b£¬1)
ÓÖ
=(1£¬
£¬-
)
¡à|cos£¼
£¬
£¾|=
=
=
¡£¨6·Ö£©
½âµÃb=1£¬»òb=
£¬
¡ßAC¡ÜCC1¡àb=1
¡à
1=(1£¬1£¬1)
ͬÀí¿ÉÇóµÃƽÃæAA1BµÄÒ»¸ö·¨ÏòÁ¿
=(1£¬1£¬-1)
¡àcos£¼
£¬
£¾=
=
ÓÖ¶þÃæ½ÇC-AA1-BΪÈñ¶þÃæ½Ç£¬¹ÊÓàÏÒֵΪ
£®
È¡A1BµÄÖеãD£¬Á¬½ÓED£¬DC1£¬ÔòED¡ÎAA1£¬ED=
1 |
2 |
¡ßFΪCC1ÉϵĶ¯µã£¬¡àED¡ÎFC1£¬ED=FC1£¬
¡àËıßÐÎDEFC1ÊÇƽÐÐËıßÐÎ
¡àEF¡ÎDC1£¬
¡àEF?ƽÃæA1BC1£¬DC1?ƽÃæA1BC1£¬
¡àEF¡ÎƽÃæA1BC1£»
£¨¢ò£©´æÔÚ£¬µ±FÔÚ¿¿¶ËµãC1Ò»²àµÄËĵȷֵãʱ£®½¨Á¢ÈçͼËùʾµÄ¿Õ¼äÖ±½Ç×ø±êϵ£¬ÉèA£¨0£¬0£¬b£©£¬F£¨x£¬1-x£¬0£©£¬ÔòE£¨-
1 |
2 |
b |
2 |
EF |
1 |
2 |
b |
2 |
CC1 |
EF |
CC1 |
1 |
4 |
£¨III£©ÉèƽÃæACC1A1µÄÒ»¸ö·¨ÏòÁ¿Îª
n |
ÓÖ
CC1 |
AC |
Ôò
|
|
n |
ÓÖ
EF |
1 |
2 |
b |
2 |
¡à|cos£¼
n1 |
EF |
|
| ||||
|
|
b | ||||||||
|
| ||
3 |
½âµÃb=1£¬»òb=
| ||
2 |
¡ßAC¡ÜCC1¡àb=1
¡à
n |
ͬÀí¿ÉÇóµÃƽÃæAA1BµÄÒ»¸ö·¨ÏòÁ¿
n2 |
¡àcos£¼
n1 |
n2 |
| ||||
|
|
1 |
3 |
ÓÖ¶þÃæ½ÇC-AA1-BΪÈñ¶þÃæ½Ç£¬¹ÊÓàÏÒֵΪ
1 |
3 |
µãÆÀ£º±¾Ì⿼²éÏßÃæƽÐУ¬¿¼²éÃæÃæ½Ç£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿