题目内容
已知数列{an}为等差数列,数列{bn}为等比数列.
(1)若an=
(其中b1=1,bn>0,n∈N*),试求数列{an}的公差d与数列{bn}的公比q之间的关系式;
(2)若a1b1+a2b2+…+anbn=n2n+3,且a1=8,试求数列{an}与{bn}的通项公式.
(1)若an=
lgb 1+lgb2+…+lgbn | n |
(2)若a1b1+a2b2+…+anbn=n2n+3,且a1=8,试求数列{an}与{bn}的通项公式.
分析:(1)利用等比数列的通项公式及对数的运算性质可把an化为lgb1q
,同理可化an+1为lgb1q
,根据an+1-an=d可得d与q的关系式;
(2)由a1b1+a2b2+…+anbn=n2n+3,①得a1b1+a2b2+…+anbn+an+1bn+1=(n+1)2n+4,②两式相减得an+1bn+1=(n+2)2n+3,把an+1=8+nd代入上式可表示出bn+1,根据
为常数可得等式,解出即可;
n-1 |
2 |
n |
2 |
(2)由a1b1+a2b2+…+anbn=n2n+3,①得a1b1+a2b2+…+anbn+an+1bn+1=(n+1)2n+4,②两式相减得an+1bn+1=(n+2)2n+3,把an+1=8+nd代入上式可表示出bn+1,根据
bn+2 |
bn+1 |
解答:解:(1)an=
=
=
=
=lgb1q
,
an+1=
=
=
=lgb1q
,
∴an+1-an=lgb1q
-lgb1q
=lg
=lgq
=d,
∴102d=q;
(2)由a1b1+a2b2+…+anbn=n2n+3,①
得a1b1+a2b2+…+anbn+an+1bn+1=(n+1)2n+4,②
②-①得an+1bn+1=(n+2)2n+3,
∵an+1=8+nd,∴bn+1=
,
则
=
=
=
,
∵{bn}为等比数列,∴上述比式为常数,
则2d:d=(6d+16):(3d+8)=48:(2d+16),
解得d=4,则q=2,
故an=8+(n-1)×4=4n+4,
由a1b1=24,得b1=2,∴bn=2•2n-1=2n.
lgb 1+lgb2+…+lgbn |
n |
lgb1b2…bn |
n |
lgb1nq
| ||
n |
nlgb1q
| ||
n |
n-1 |
2 |
an+1=
lgb1+lgb2+…+lgbn+1 |
n+1 |
lgb1n+1q
| ||
n+1 |
(n+1)lgb1q
| ||
n+1 |
n |
2 |
∴an+1-an=lgb1q
n |
2 |
n-1 |
2 |
b1q
| ||
b1q
|
1 |
2 |
∴102d=q;
(2)由a1b1+a2b2+…+anbn=n2n+3,①
得a1b1+a2b2+…+anbn+an+1bn+1=(n+1)2n+4,②
②-①得an+1bn+1=(n+2)2n+3,
∵an+1=8+nd,∴bn+1=
(n+2)•2n+3 |
8+nd |
则
bn+2 |
bn+1 |
(n+3)•2n+4(8+nd) |
(n+2)•2n+3[8+(n+1)d] |
2(n+3)(8+nd) |
(n+2)[8+(n+1)d] |
2dn2+(6d+16)n+48 |
dn2+(3d+8)n+2d+16 |
∵{bn}为等比数列,∴上述比式为常数,
则2d:d=(6d+16):(3d+8)=48:(2d+16),
解得d=4,则q=2,
故an=8+(n-1)×4=4n+4,
由a1b1=24,得b1=2,∴bn=2•2n-1=2n.
点评:本题考查等差数列、等比数列的定义及其通项公式,运算量较大,对能力要求较高.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
定义:在数列{an}中,an>0且an≠1,若
为定值,则称数列{an}为“等幂数列”.已知数列{an}为“等幂数列”,且a1=2,a2=4,Sn为数列{an}的前n项和,则S2009=( )
a | an+1 n |
A、6026 | B、6024 |
C、2 | D、4 |