题目内容

已知数列{an}为等差数列,数列{bn}为等比数列.
(1)若an=
lgb 1+lgb2+…+lgbnn
(其中b1=1,bn>0,n∈N*),试求数列{an}的公差d与数列{bn}的公比q之间的关系式;
(2)若a1b1+a2b2+…+anbn=n2n+3,且a1=8,试求数列{an}与{bn}的通项公式.
分析:(1)利用等比数列的通项公式及对数的运算性质可把an化为lgb1q
n-1
2
,同理可化an+1为lgb1q
n
2
,根据an+1-an=d可得d与q的关系式;
(2)由a1b1+a2b2+…+anbn=n2n+3,①得a1b1+a2b2+…+anbn+an+1bn+1=(n+1)2n+4,②两式相减得an+1bn+1=(n+2)2n+3,把an+1=8+nd代入上式可表示出bn+1,根据
bn+2
bn+1
为常数可得等式,解出即可;
解答:解:(1)an=
lgb 1+lgb2+…+lgbn
n
=
lgb1b2bn
n
=
lgb1nq
n(n-1)
2
n
=
nlgb1q
n-1
2
n
=lgb1q
n-1
2

an+1=
lgb1+lgb2+…+lgbn+1
n+1
=
lgb1n+1q
n(n+1)
2
n+1
=
(n+1)lgb1q
n
2
n+1
=lgb1q
n
2

∴an+1-an=lgb1q
n
2
-lgb1q
n-1
2
=lg
b1q
n
2
b1q
n-1
2
=lgq
1
2
=d,
∴102d=q;
(2)由a1b1+a2b2+…+anbn=n2n+3,①
得a1b1+a2b2+…+anbn+an+1bn+1=(n+1)2n+4,②
②-①得an+1bn+1=(n+2)2n+3
∵an+1=8+nd,∴bn+1=
(n+2)•2n+3
8+nd

bn+2
bn+1
=
(n+3)•2n+4(8+nd)
(n+2)•2n+3[8+(n+1)d]
=
2(n+3)(8+nd)
(n+2)[8+(n+1)d]
=
2dn2+(6d+16)n+48
dn2+(3d+8)n+2d+16

∵{bn}为等比数列,∴上述比式为常数,
则2d:d=(6d+16):(3d+8)=48:(2d+16),
解得d=4,则q=2,
故an=8+(n-1)×4=4n+4,
a1b1=24,得b1=2,∴bn=2•2n-1=2n
点评:本题考查等差数列、等比数列的定义及其通项公式,运算量较大,对能力要求较高.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网