题目内容
计算:
(Ⅰ)2-
+
+
-
(Ⅱ)2×(lg
)2+
lg2×lg5+
.
(Ⅰ)2-
1 |
2 |
(-4)0 | ||
|
1 | ||
|
(1-
|
(Ⅱ)2×(lg
2 |
1 |
2 |
(lg
|
分析:(Ⅰ)由指数式的运算性质和运算法则,把2-
+
+
-
等价转化为
+
+
+1-1,由此能求出结果.
(Ⅱ)利用对数的运算法则和运算性质,把2×(lg
)2+
lg2×lg5+
等价转化为2×(
lg2)2+
lg2•lg5+
,由此能求出结果.
1 |
2 |
(-4)0 | ||
|
1 | ||
|
(1-
|
| ||
2 |
| ||
2 |
2 |
(Ⅱ)利用对数的运算法则和运算性质,把2×(lg
2 |
1 |
2 |
(lg
|
1 |
2 |
1 |
2 |
(lg
|
解答:解:(Ⅰ)2-
+
+
-
=
+
+
+1-1
=2
.
(Ⅱ)2×(lg
)2+
lg2×lg5+
=2×(
lg2)2+
lg2•lg5+
=
lg22+
lg2•lg5-(lg
-1)
=
lg22+
lg2•lg5-
g2+1
=
lg2(lg2+lg5-1)+1
=
lg2(lg10-1)+1
=1.
1 |
2 |
(-4)0 | ||
|
1 | ||
|
(1-
|
=
| ||
2 |
| ||
2 |
2 |
=2
2 |
(Ⅱ)2×(lg
2 |
1 |
2 |
(lg
|
=2×(
1 |
2 |
1 |
2 |
(lg
|
=
1 |
2 |
1 |
2 |
2 |
=
1 |
2 |
1 |
2 |
1 |
2 |
=
1 |
2 |
=
1 |
2 |
=1.
点评:本题考查对数和指数的运算法则和运算性质的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目