题目内容
【题目】已知函数,.
(1)求证:在区间上有且仅有一个零点,且;
(2)若当时,不等式恒成立,求证:.
【答案】(1)详见解析;(2)详见解析.
【解析】
(1)利用求导数,判断在区间上的单调性,然后再证异号,即可证明结论;
(2)当时,不等式恒成立,分离参数只需时,恒成立,
设(),需,根据(1)中的结论先求出,再构造函数结合导数法,证明即可.
(1),
令,则,
所以在区间上是增函数,
则,所以在区间上是增函数.
又因为,
,
所以在区间上有且仅有一个零点,且.
(2)由题意,在区间上恒成立,
即在区间上恒成立,
当时,;
当时,恒成立,
设(),
所以.
由(1)可知,,使,
所以,当时,,当时,,
由此在区间上单调递减,在区间上单调递增,
所以.
又因为,
所以,从而,
所以.令,,
则,
所以在区间上是增函数,
所以,故.
练习册系列答案
相关题目