题目内容

若数列{an}的前n项和为Sn,a1=2且Sn+1=4an-2(n=1,2,3…).
(I)求a2,a3
(II)求证:数列{an-2an-1}是常数列;
(III)求证:
a1-1
a2-1
+
a2-1
a3-1
+…+
an-1
an+1-1
n
2
分析:(1)由Sn+1=4an-2(n=1,2,3),知S2=4a1-2=6.所以a2=S2-a1=4.a3=8.
(2)由Sn+1=4an-2(n=1,2,3),知Sn=4an-1-2(n≥2);所以an+1=4an-4an-1由此入手能推导出数列{an-2an-1}是常数列.
(3)由题设条件知an=2n,所以
an-1
an+1-1
=
2n-1
2n+1-1
=
1
2
2n-1
2n-
1
2
1
2
.由此及彼可知
a1-1
a2-1
+
a2-1
a3-1
++
an-1
an+1-1
1
2
+
1
2
++
1
2
=
n
2
解答:解:(1)∵Sn+1=4an-2(n=1,2,3),∴S2=4a1-2=6.∴a2=S2-a1=4.(2分)
同理可得a3=8.(3分)
(2)∵Sn+1=4an-2(n=1,2,3),∴Sn=4an-1-2(n≥2).(4分)
两式相减得:an+1=4an-4an-1(5分)
变形得:an+1-2an=2an-4an-1=2(an-2an-1)(n≥2)
则:an-2an-1=2(an-1-2an-2)(n≥3)(6分)
an-2an-1=2(an-1-2an-2)=22(an-2-2an-3)=23(an-3-2an-4
=2n-2(a2-2a1)∵a2-2a1=0∴an-2an-1=2n-2(a2-2a1)=0.
数列{an-2an-1}是常数列.(9分)
(3)由(II)可知:an=2an-1(n≥2).
数列{an}是以2为首项,以2为公比的等比数列.∴an=2n,(10分)
an-1
an+1-1
=
2n-1
2n+1-1
=
1
2
2n-1
2n-
1
2
1
2
.(12分)
a1-1
a2-1
+
a2-1
a3-1
++
an-1
an+1-1
1
2
+
1
2
++
1
2
=
n
2
.(14分)
点评:本题考查数列的性质及综合运用,解题时要认真审题,仔细解答.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网