题目内容
已知满足不等式,求函数的最小值.
令,则 y=(1)当a(2)当(3)当a>16时。
解析
若定义在上的函数满足条件:存在实数且,使得:⑴ 任取,有(是常数);⑵ 对于内任意,当,总有。我们将满足上述两条件的函数称为“平顶型”函数,称为“平顶高度”,称为“平顶宽度”。根据上述定义,解决下列问题:(1)函数是否为“平顶型”函数?若是,求出“平顶高度”和“平顶宽度”;若不是,简要说明理由。(2) 已知是“平顶型”函数,求出 的值。(3)对于(2)中的函数,若在上有两个不相等的根,求实数的取值范围。
已知函数(为实数,,),(1)若,且函数的值域为,求的表达式;(2)在(1)的条件下,当时,是单调函数,求实数的取值范围;(3)设,,,且函数为偶函数,判断是否大于?
(本题满分12分)已知函数(),(1)求函数的最小值;(2)已知,命题p:关于x的不等式对任意恒成立;命题q:不等式 对任意恒成立.若“p或q”为真,“p且q”为假,求实数m的取值范围.
(本小题满分12分)已知二次函数的图像经过坐标原点,且满足,设函数,其中m为常数且。(1)求函数的解析式;(2)判断函数的单调性并说明理由。
(本小题满分12分)二次函数f(x)满足且f(0)=1.(1)求f(x)的解析式;(2)在区间上,y= f(x)的图象恒在y=2x+m的图象上方,试确定实数m的范围.
(本小题满分12分)已知二次函数f(x)=ax2+bx+c.(1)若f(-1)=0,试判断函数f(x)零点的个数;(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;②对任意x∈R,都有0≤f(x)-x≤(x-1)2.若存在,求出a,b,c的值;若不存在,请说明理由。(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=[f(x1)+f(x2)]成立。
(本小题满分13分)在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.
已知函数的定义域为,并满足(1)对于一切实数,都有;(2)对任意的; (3);利用以上信息求解下列问题:(1)求;(2)证明;(3)若对任意的恒成立,求实数的取值范围。