ÌâÄ¿ÄÚÈÝ
ÒÑÖªÔ²Mx2+y2-2tx-6t-10=0£¬ÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©£¬ÈôÍÖÔ²CÓëxÖáµÄ½»µãA£¨5£¬y0£©µ½ÆäÓÒ×¼ÏߵľàÀëΪ
£»µãAÔÚÔ²MÍ⣬ÇÒÔ²MÉϵĵãºÍµãAµÄ×î´ó¾àÀëÓë×îС¾àÀëÖ®²îΪ2£®
£¨1£©ÇóÔ²MµÄ·½³ÌºÍÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãPΪÍÖÔ²CÉÏÈÎÒâÒ»µã£¬×ÔµãPÏòÔ²MÒýÇÐÏߣ¬Çеã·Ö±ðΪA¡¢B£¬ÇëÊÔ×ÅÈ¥Çó
A•
BµÄÈ¡Öµ·¶Î§£»
£¨3£©ÉèÖ±ÏßϵM£ºxcos¦È+£¨y-3£©sin¦È=1£¨¦È¡ÊR£©£»ÇóÖ¤£ºÖ±ÏßϵMÖеÄÈÎÒâÒ»ÌõÖ±ÏßlºãÓ붨ԲÏàÇУ¬²¢Ö±½Óд³öÈý±ß¶¼ÔÚÖ±ÏßϵMÖеÄÖ±ÏßÉϵÄËùÓпÉÄܵĵÈÑüÖ±½ÇÈý½ÇÐεÄÃæ»ý£®
x2 |
a2 |
y2 |
b2 |
10 |
3 |
£¨1£©ÇóÔ²MµÄ·½³ÌºÍÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãPΪÍÖÔ²CÉÏÈÎÒâÒ»µã£¬×ÔµãPÏòÔ²MÒýÇÐÏߣ¬Çеã·Ö±ðΪA¡¢B£¬ÇëÊÔ×ÅÈ¥Çó
P |
P |
£¨3£©ÉèÖ±ÏßϵM£ºxcos¦È+£¨y-3£©sin¦È=1£¨¦È¡ÊR£©£»ÇóÖ¤£ºÖ±ÏßϵMÖеÄÈÎÒâÒ»ÌõÖ±ÏßlºãÓ붨ԲÏàÇУ¬²¢Ö±½Óд³öÈý±ß¶¼ÔÚÖ±ÏßϵMÖеÄÖ±ÏßÉϵÄËùÓпÉÄܵĵÈÑüÖ±½ÇÈý½ÇÐεÄÃæ»ý£®
·ÖÎö£º£¨1£©ÓÉÌâÒâµÃµ½a=5£¬ÓÉAµ½ÍÖÔ²ÓÒ×¼ÏߵľàÀëµÈÓÚ
µÃµ½cµÄÖµ£¬ÓÉb2=a2-c2Çó³öb2£¬ÔòÍÖÔ²·½³Ì¿ÉÇó£¬ÔÙÓÉÔ²MÉϵĵãºÍµãAµÄ×î´ó¾àÀëÓë×îС¾àÀëÖ®²îΪ2£¬¼´Ô²µÄ°ë¾¶µÈÓÚ1Çó³ötµÄÖµ£¬ÔòÔ²µÄ·½³Ì¿ÉÇó£»
£¨2£©ÒòΪԲMµÄÔ²ÐÄÔÚÍÖÔ²µÄ×ó½¹µãÉÏ£¬¶øÍÖÔ²ÉϵĵãÖУ¬µ½×ó½¹µã¾àÀë×î½üµÄµãÊÇ×󶥵㣬¾àÀë×îÔ¶µÄµãÊÇÓÒ¶¥µã£¬Ì½Ë÷·¢ÏÖPµãλÓÚ×󶥵ãʱ
A•
BµÄÖµ×îС£¬PµãλÓÚÍÖÔ²ÓÒ¶¥µãʱ
A•
BµÄÖµ×î´ó£»
£¨3£©Óɵ㵽ֱÏß¾àÀ빫ʽ¿ÉÖª£¬µã£¨0£¬3£©µ½Ö±Ïßxcos¦È+£¨y-3£©sin¦È=1£¨¦È¡ÊR£©µÄ¾àÀëµÈÓÚ1£¬ÓÉ´Ë˵Ã÷Ö±ÏßϵMÖеÄÈÎÒâÒ»ÌõÖ±ÏßlºãÓ붨Բx2+£¨y-3£©2=1ÏàÇУ¬×÷ͼ·ÖÎö³öÄܹ»¹¹³ÉµÈÑüÖ±½ÇÈý½ÇÐεÄËùÓÐÀàÐÍ£¬ÀûÓÃƽÃ漸ºÎ֪ʶÇó³öÿһÖÖµÈÑüÖ±½ÇÈý½ÇÐεÄÑü£¬ÔòÃæ»ý¿ÉÇó£®
10 |
3 |
£¨2£©ÒòΪԲMµÄÔ²ÐÄÔÚÍÖÔ²µÄ×ó½¹µãÉÏ£¬¶øÍÖÔ²ÉϵĵãÖУ¬µ½×ó½¹µã¾àÀë×î½üµÄµãÊÇ×󶥵㣬¾àÀë×îÔ¶µÄµãÊÇÓÒ¶¥µã£¬Ì½Ë÷·¢ÏÖPµãλÓÚ×󶥵ãʱ
P |
P |
P |
P |
£¨3£©Óɵ㵽ֱÏß¾àÀ빫ʽ¿ÉÖª£¬µã£¨0£¬3£©µ½Ö±Ïßxcos¦È+£¨y-3£©sin¦È=1£¨¦È¡ÊR£©µÄ¾àÀëµÈÓÚ1£¬ÓÉ´Ë˵Ã÷Ö±ÏßϵMÖеÄÈÎÒâÒ»ÌõÖ±ÏßlºãÓ붨Բx2+£¨y-3£©2=1ÏàÇУ¬×÷ͼ·ÖÎö³öÄܹ»¹¹³ÉµÈÑüÖ±½ÇÈý½ÇÐεÄËùÓÐÀàÐÍ£¬ÀûÓÃƽÃ漸ºÎ֪ʶÇó³öÿһÖÖµÈÑüÖ±½ÇÈý½ÇÐεÄÑü£¬ÔòÃæ»ý¿ÉÇó£®
½â´ð£º£¨1£©½â£ºÓÉÌâÒâ¿ÉÖªa=5£¬ÇÒ
-a=
£¬°Ña=5´úÈë½âµÃc=3£¬ËùÒÔb2=a2-c2=16£¬
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
+
=1£®
ÓÉx2+y2-2tx-6t-10=0£¬µÃ£¨x-t£©2+y2=t2+6t+10£¬ËùÒÔ¸ÃÔ²µÄÔ²ÐÄÔÚxÖáÉÏ£¬
ÒòµãAÔÚÔ²MÍ⣬ÇÒÔ²MÉϵĵãºÍµãAµÄ×î´ó¾àÀëÓë×îС¾àÀëÖ®²îΪ2£¬¼´Ô²µÄ°ë¾¶µÈÓÚ1£¬
ËùÒÔt2+6t+10=1£¬½âµÃt=-3£¬
ËùÒÔÔ²MµÄ·½³ÌΪ£¨x+3£©2+y2=1£»
£¨2£©½â£ºÈçͼ£¬
ÒòΪԲMµÄÔ²ÐÄλÓÚÍÖÔ²µÄ×ó½¹µãÉÏ£¬ÇÒÔ²ÔÚÍÖÔ²ÄÚ²¿£¬
ËùÒÔÍÖÔ²µÄ×󶥵㵽ԲMµÄÔ²ÐľàÀë×î½ü£¬ÔòµãPλÓÚÍÖÔ²×󶥵ãʱ|
|=|
|×îС£¬ÇÒ¡ÏAPB×î´ó£¬Ôòcos£¼
£¬
£¾×îС£®µ±PλÓÚÍÖÔ²ÓÒ¶¥µãʱ|
|=|
|×î´ó£¬ÇÒ¡ÏAPB×îС£¬Ôòcos£¼
£¬
£¾×î´ó£®
µ±PλÓÚÍÖÔ²×󶥵ãʱ£¬ÓÉͼ¿ÉÖªÁ½ÌõÇÐÏß³¤Îª
£¬Á½ÇÐÏ߼нÇΪ60¡ã£¬ÓàÏÒֵΪ
£®µ±PλÓÚÍÖÔ²ÓÒ¶¥µãʱ£¬ÓÉͼ¿ÉÖªÁ½ÌõÇÐÏß³¤Îª
£¬Á½ÇÐÏ߼нÇÒ»°ëµÄÕýÏÒֵΪ
£¬Á½ÇÐÏ߼нÇÓàÏÒֵΪ1-2¡Á(
)2=
£®
ËùÒÔ
A•
BµÄ×îСֵΪ|
||
|COS60¡ã=
¡Á
¡Á
=
£®×î´óֵΪ
¡Á
¡Á
=
£®
ËùÒÔ
A•
BµÄÈ¡Öµ·¶Î§ÊÇ[
£¬
]£»
£¨3£©Ö¤Ã÷£ºÒòΪxcos¦È+£¨y-3£©sin¦È=1£¬ËùÒÔµãP£¨0£¬3£©µ½MÖÐÿÌõÖ±ÏߵľàÀëd=
=1£¬
¼´MΪԲC£ºx2+£¨y-3£©2=1µÄÈ«ÌåÇÐÏß×é³ÉµÄ¼¯ºÏ£¬ËùÒÔÖ±ÏßϵMÖеÄÈÎÒâÒ»ÌõÖ±ÏßlºãÓ붨Բ
C£ºx2+£¨y-3£©2=1ÏàÇУ®
Èý±ß¶¼ÔÚÖ±ÏßϵMÖеÄÖ±ÏßÉϵÄËùÓпÉÄܵĵÈÑüÖ±½ÇÈý½ÇÐεÄÇé¿öÓÐÈýÖÖ£¬Ò»ÖÖÊÇÈý½ÇÐÎÍâÇÐÓÚÔ²£¬ÁíÍâÁ½ÖÖÊÇ
Ô²ÔÚÈý½ÇÐÎÍⲿ£®
Èçͼ£¬
µÈÑüÖ±½ÇÈý½ÇÐÎABCµÄÑüAB=2+
£¬ÆäÃæ»ýS=
¡Á(2+
)¡Á(2+
)=3+2
£»
µÈÑüÖ±½ÇÈý½ÇÐÎADEµÄÑüAD=2-
£¬ÆäÃæ»ýS=
¡Á(2-
)¡Á(2-
)=3-2
£»
µÈÑüÖ±½ÇÈý½ÇÐÎGHCµÄÑüGC=
£¬ÆäÃæ»ýS=
¡Á
¡Á
=1£®
a2 |
c |
10 |
3 |
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
x2 |
25 |
y2 |
16 |
ÓÉx2+y2-2tx-6t-10=0£¬µÃ£¨x-t£©2+y2=t2+6t+10£¬ËùÒÔ¸ÃÔ²µÄÔ²ÐÄÔÚxÖáÉÏ£¬
ÒòµãAÔÚÔ²MÍ⣬ÇÒÔ²MÉϵĵãºÍµãAµÄ×î´ó¾àÀëÓë×îС¾àÀëÖ®²îΪ2£¬¼´Ô²µÄ°ë¾¶µÈÓÚ1£¬
ËùÒÔt2+6t+10=1£¬½âµÃt=-3£¬
ËùÒÔÔ²MµÄ·½³ÌΪ£¨x+3£©2+y2=1£»
£¨2£©½â£ºÈçͼ£¬
ÒòΪԲMµÄÔ²ÐÄλÓÚÍÖÔ²µÄ×ó½¹µãÉÏ£¬ÇÒÔ²ÔÚÍÖÔ²ÄÚ²¿£¬
ËùÒÔÍÖÔ²µÄ×󶥵㵽ԲMµÄÔ²ÐľàÀë×î½ü£¬ÔòµãPλÓÚÍÖÔ²×󶥵ãʱ|
PA |
PB |
PA |
PB |
PA |
PB |
PA |
PB |
µ±PλÓÚÍÖÔ²×󶥵ãʱ£¬ÓÉͼ¿ÉÖªÁ½ÌõÇÐÏß³¤Îª
3 |
1 |
2 |
63 |
1 |
8 |
1 |
8 |
31 |
32 |
ËùÒÔ
P |
P |
PA |
PB |
3 |
3 |
1 |
2 |
3 |
2 |
63 |
63 |
31 |
32 |
1953 |
32 |
ËùÒÔ
P |
P |
3 |
2 |
1953 |
32 |
£¨3£©Ö¤Ã÷£ºÒòΪxcos¦È+£¨y-3£©sin¦È=1£¬ËùÒÔµãP£¨0£¬3£©µ½MÖÐÿÌõÖ±ÏߵľàÀëd=
1 | ||
|
¼´MΪԲC£ºx2+£¨y-3£©2=1µÄÈ«ÌåÇÐÏß×é³ÉµÄ¼¯ºÏ£¬ËùÒÔÖ±ÏßϵMÖеÄÈÎÒâÒ»ÌõÖ±ÏßlºãÓ붨Բ
C£ºx2+£¨y-3£©2=1ÏàÇУ®
Èý±ß¶¼ÔÚÖ±ÏßϵMÖеÄÖ±ÏßÉϵÄËùÓпÉÄܵĵÈÑüÖ±½ÇÈý½ÇÐεÄÇé¿öÓÐÈýÖÖ£¬Ò»ÖÖÊÇÈý½ÇÐÎÍâÇÐÓÚÔ²£¬ÁíÍâÁ½ÖÖÊÇ
Ô²ÔÚÈý½ÇÐÎÍⲿ£®
Èçͼ£¬
µÈÑüÖ±½ÇÈý½ÇÐÎABCµÄÑüAB=2+
2 |
1 |
2 |
2 |
2 |
2 |
µÈÑüÖ±½ÇÈý½ÇÐÎADEµÄÑüAD=2-
2 |
1 |
2 |
2 |
2 |
2 |
µÈÑüÖ±½ÇÈý½ÇÐÎGHCµÄÑüGC=
2 |
1 |
2 |
2 |
2 |
µãÆÀ£º±¾Ì⿼²éÁËÔ²ÓëÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÁËƽÃæÏòÁ¿ÊýÁ¿»ýµÄÔËË㣬¿¼²éÁËÖ±ÏßÓëԲ׶ÇúÏߵĹØϵ£¬¸ÃÌ⿼²éÁËѧÉúµÄ̽Ë÷˼άÄÜÁ¦ºÍ·¢É¢Ë¼Î¬ÄÜÁ¦£¬ÊôÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿