题目内容

如图,已知A、B为椭圆
x2
a2
+
y2
b2
=1(a>b>0)
和双曲线
x2
a2
-
y2
b2
=1
的公共顶点,P、Q分别为双曲线和椭圆上不同于A、B的动点,且
OP
OQ
(λ∈R,λ>1)
.设AP、BP、AQ、BQ的斜率分别为k1、k2、k3、k4
(1)求证:k1k2=
b2
a2

(2)求k1+k2+k3+k4的值;
(3)设F1、F2分别为双曲线和椭圆的右焦点,若PF1∥QF2,求k12+k22+k32+k42的值.
分析:(1)设P(x1,y1),则k1•k2=
y1
x1+a
y1
x1-a
=
y12
x12-a2
,再利用点P(x1,y1)在双曲线
x2
a2
-
y2
b2
=1
上,从而可证k1k2=
b2
a2

(2)先计算k1+k2=
y1
x1+a
+
y1
x1-a
=
2x1y1
x12-a2
=
2b2
a2
x1
y1
,设Q(x2,y2)同理可得k3+k4=-
2b2
a2
x2
y2
OP
OQ
共线⇒
x1
y1
=
x2
y2
,从而可求得k1+k2+k3+k4的值;
(3)由(2)可求得∴(k1+k22=4
b4
a4
x12
y12
,(k3+k42=4
b4
a4
x22
y22
,PF1∥QF2⇒|OF1|=λ|OF2|⇒λ2=
a2+b2
a2-b2
x12
y12
=
a4
b4
,从而得到(k1+k22=4,(k3+k42=4;问题即可解决.
解答:(1)证明:设P(x1,y1),k1•k2=
y1
x1+a
y1
x1-a
=
y12
x12-a2
,且
x12
a2
-
y12
b2
=1

∴x12-a2=
a2
b2
•y12
k1k2=
b2
a2

(2)解:∵k1+k2=
y1
x1+a
+
y1
x1-a
=
2x1 y1
x12-a2
=
2x1y1
a2
b2
• y12
=
2b2
a2
x1
y1

设Q(x2,y2),同理可得k3+k4=-
2b2
a2
x2
y2

OP
OQ
共线,
∴x1=λx2,y1=λy2
x1
y1
=
x2
y2

∴k1+k2+k3+k4=
2b2
a2
x1
y1
-
x2
y2
)=0;
(3)解:∵
OP
OQ
(λ∈R,λ>1)

x2=
1
λ
x1
y2=
1
λ
y1
,又
x22
a2
+
y22
b2
=1

x12
a2
+
y12
b2
=λ2
,又
x12
a2
-
y12
b2
=1

x12=
λ2+1
2
a2
y12=
λ2-1
2
b2

又∵若PF1∥QF2
∴|OF1|=λ|OF2|,
∴λ2=
a2+b2
a2-b2

x12
y12
=
λ2+1
λ2-1
a2
b2
=
a4
b4

∴(k1+k22=4
b4
a4
x12
y12
=4
b4
a4
a4
b4
=4;
同理(k3+k42=4;
k1k2=
b2
a2
k3k4=-
b2
a2

∴k12+k22+k32+k42=(k1+k22+(k3+k42-2(k1•k2+k3•k4)=4+4-0=8.
点评:本题考查圆锥曲线的综合,着重考查整体代换与方程思想,培养学生综合分析问题、解决问题的能力,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网