题目内容

数学公式


  1. A.
    (1,1)
  2. B.
    (1,2)
  3. C.
    (2,2)
  4. D.
    (2,4)
C
分析:先设直线y=2x+t是抛物线的切线,最小距离是两直线之间的距离,于抛物线方程联立消去y,再根据判别式等于0求得t,代入方程求得x,进而求得y,答案可得.
解答:设直线y=2x+t是抛物线的切线,最小距离是两直线之间的距离,
代入化简得x2-4x-2t=0
由△=0得t=-2
代入方程得x=2,y=2
∴P为(2,2)
故选C.
点评:本题主要考查抛物线的应用和抛物线与直线的关系.考查了学生综合分析和解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网