题目内容

【题目】平面直角坐标系中,直线l的参数方程是(t为参数),以坐标原点为极点,x轴的正半轴为极轴,建立极坐标系,已知曲线C的极坐标方程为ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0.
(1)求直线l的极坐标方程;
(2)若直线l与曲线C相交于A、B两点,求|AB|.

【答案】解:(1)直线l的参数方程是(t为参数),化为普通方程得:y=x
∴在平面直角坐标系中,直线l经过坐标原点,倾斜角是
因此,直线l的极坐标方程是θ=,(ρ∈R);
(2)把θ=代入曲线C的极坐标方程ρ2cos2θ+ρ2sin2θ﹣2ρsinθ﹣3=0,得ρ2ρ﹣3=0
∴由一元二次方程根与系数的关系,得ρ12=,ρ1ρ2=﹣3,
∴|AB|=|ρ1﹣ρ2|==
【解析】(1)将直线化成普通方程,可得它是经过原点且倾斜角为的直线,由此不难得到直线l的极坐标方程;
(2)将直线l的极坐标方程代入曲线C极坐标方程,可得关于ρ的一元二次方程,然后可以用根与系数的关系结合配方法,可以得到AB的长度.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网