题目内容

(09年枣庄一模文)(14分)

       设函数

   (1)当的单调性;

   (2)若函数的取值范围;

   (3)若对于任意的上恒成立,求的取值范围。

解析:(1)

       当

       令   3分

       当的变化情况如下表:

      

0

2

-

0

+

0

-

0

+

单调递减

极小值

单调递增

极大值

单调递减

极小值

单调递增

       所以上是增函数,

       在区间上是减函数   6分

   (2)的根。

       处有极值。

       则方程有两个相等的实根或无实根,

          8分

       解此不等式,得

       这时,是唯一极值。

       因此满足条件的   10分

       注:若未考虑进而得到,扣2分。

   (3)由(2)知,当恒成立。

       当上是减函数,

       因此函数   12分

       又上恒成立。

      

       于是上恒成立。

      

       因此满足条件的   14分

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网