ÌâÄ¿ÄÚÈÝ
ÉèÊýÁÐ{xn}Âú×ãxn¡Ù1ÇÒ£¨n¡ÊN*£©£¬Ç°nÏîºÍΪSn£®ÒÑÖªµãp1£¨x1£¬S1£©£¬P2£¨x2£¬s2£©£¬¡Pn£¨xn£¬sn£©¶¼ÔÚÖ±Ïßy=kx+bÉÏ£¨ÆäÖг£Êýb£¬kÇÒk¡Ù1£¬b¡Ù0£©£¬ÓÖyn=log
xn£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{xn]ÊǵȱÈÊýÁУ»
£¨2£©Èôyn=18-3n£¬ÇóʵÊýk£¬bµÄÖµ£»
£¨3£©Èç¹û´æÔÚt¡¢s¡ÊN*£¬s¡ÙtʹµÃµã£¨t£¬yt£©ºÍµã£¨s£¬yt£©¶¼ÔÚÖ±Ïßy=2x+1ÉÏ£®ÎÊÊÇ·ñ´æÔÚÕýÕûÊýM£¬µ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
1 |
2 |
£¨1£©ÇóÖ¤£ºÊýÁÐ{xn]ÊǵȱÈÊýÁУ»
£¨2£©Èôyn=18-3n£¬ÇóʵÊýk£¬bµÄÖµ£»
£¨3£©Èç¹û´æÔÚt¡¢s¡ÊN*£¬s¡ÙtʹµÃµã£¨t£¬yt£©ºÍµã£¨s£¬yt£©¶¼ÔÚÖ±Ïßy=2x+1ÉÏ£®ÎÊÊÇ·ñ´æÔÚÕýÕûÊýM£¬µ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Ö¤Ã÷£º¡ßµãPn£¨xn£¬Sn£©£¬Pn+1£¨xn+1£¬Sn+1£©¶¼ÔÚÖ±Ïßy=kx+bÉÏ£¬
¡àSn=kxn+b£¬Sn+1=kxn+1+b
Á½Ê½Ïà¼õµÃSn+1-Sn=kxn+1-kxn£¬¼´xn+1=kxn+1-kxn£¬
¡ß³£Êýk¡Ù0£¬ÇÒk¡Ù1£¬¡à
=
£¨·ÇÁã³£Êý£©
¡àÊýÁÐ{xn]ÊǵȱÈÊýÁУ»
£¨2£©ÓÉyn=log0.5xn£¬µÃxn=£¨
£©yn=8n-6£¬
¡à
=8£¬µÃk=
£®
ÓÖPnÔÚÖ±ÏßÉÏ£¬µÃSn=kxn+b£¬
Áîn=1µÃb=S1-
x1=-
x1=-
£»
£¨3£©¡ßyn=log0.5xn£¬¡àµ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢µÈ¼ÛÓÚyn£¼0ºã³ÉÁ¢£®
¡ß´æÔÚt£¬s¡ÊN*£¬Ê¹µÃ£¨t£¬ys£©ºÍ£¨s£¬yt£©¶¼ÔÚy=2x+1ÉÏ£¬
¡àys=2t+1 ¢Ù£¬yt=2s+1 ¢Ú£®
¢Ù-¢ÚµÃ£ºys-yt=2£¨t-s£©£¬
¡ßs¡Ùt£¬¡à{yn}Êǹ«²îd=-2£¼0µÄµÈ²îÊýÁÐ
¢Ù+¢ÚµÃ£ºys+yt=2£¨t+s£©+2£¬
ÓÖys+yt=y1+£¨s-1£©•£¨-2£©+y1+£¨t-1£©•£¨-2£©=2y1-2£¨s+t£©+4
ÓÉ2y1-2£¨s+t£©+4=2£¨t+s£©+2£¬µÃy1=2£¨t+s£©-1£¾0£¬
¼´£ºÊýÁÐ{yn}ÊÇÊ×ÏîΪÕý£¬¹«²îΪ¸ºµÄµÈ²îÊýÁУ¬
ËùÒÔÒ»¶¨´æÔÚÒ»¸ö×îС×ÔÈ»ÊýM£¬Ê¹
£¬¼´
½âµÃt+s-
£¼M¡Üt+s+
£®
¡ßM¡ÊN*£¬¡àM=t+s£®
¼´´æÔÚ×ÔÈ»ÊýM£¬Æä×îСֵΪt+s£¬Ê¹µÃµ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢£®
¡àSn=kxn+b£¬Sn+1=kxn+1+b
Á½Ê½Ïà¼õµÃSn+1-Sn=kxn+1-kxn£¬¼´xn+1=kxn+1-kxn£¬
¡ß³£Êýk¡Ù0£¬ÇÒk¡Ù1£¬¡à
xn+1 |
xn |
k |
k-1 |
¡àÊýÁÐ{xn]ÊǵȱÈÊýÁУ»
£¨2£©ÓÉyn=log0.5xn£¬µÃxn=£¨
1 |
2 |
¡à
k |
k-1 |
8 |
7 |
ÓÖPnÔÚÖ±ÏßÉÏ£¬µÃSn=kxn+b£¬
Áîn=1µÃb=S1-
8 |
7 |
1 |
7 |
8-5 |
7 |
£¨3£©¡ßyn=log0.5xn£¬¡àµ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢µÈ¼ÛÓÚyn£¼0ºã³ÉÁ¢£®
¡ß´æÔÚt£¬s¡ÊN*£¬Ê¹µÃ£¨t£¬ys£©ºÍ£¨s£¬yt£©¶¼ÔÚy=2x+1ÉÏ£¬
¡àys=2t+1 ¢Ù£¬yt=2s+1 ¢Ú£®
¢Ù-¢ÚµÃ£ºys-yt=2£¨t-s£©£¬
¡ßs¡Ùt£¬¡à{yn}Êǹ«²îd=-2£¼0µÄµÈ²îÊýÁÐ
¢Ù+¢ÚµÃ£ºys+yt=2£¨t+s£©+2£¬
ÓÖys+yt=y1+£¨s-1£©•£¨-2£©+y1+£¨t-1£©•£¨-2£©=2y1-2£¨s+t£©+4
ÓÉ2y1-2£¨s+t£©+4=2£¨t+s£©+2£¬µÃy1=2£¨t+s£©-1£¾0£¬
¼´£ºÊýÁÐ{yn}ÊÇÊ×ÏîΪÕý£¬¹«²îΪ¸ºµÄµÈ²îÊýÁУ¬
ËùÒÔÒ»¶¨´æÔÚÒ»¸ö×îС×ÔÈ»ÊýM£¬Ê¹
|
|
½âµÃt+s-
1 |
2 |
1 |
2 |
¡ßM¡ÊN*£¬¡àM=t+s£®
¼´´æÔÚ×ÔÈ»ÊýM£¬Æä×îСֵΪt+s£¬Ê¹µÃµ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
É躯Êýf£¨x£©¶¨ÒåÈçÏÂ±í£¬ÊýÁÐ{xn}Âú×ãx=5£¬ÇÒ¶ÔÈÎÒâ×ÔÈ»Êý¾ùÓÐxn+1=f£¨xn£©£¬Ôòx2012µÄֵΪ£¨ £©
A£®2
B£®3
C£®4
D£®5
x | 1 | 2 | 3 | 4 | 5 |
f£¨x£© | 4 | 1 | 3 | 5 | 2 |
A£®2
B£®3
C£®4
D£®5