ÌâÄ¿ÄÚÈÝ

ÉèÊýÁÐ{xn}Âú×ãxn¡Ù1ÇÒ£¨n¡ÊN*£©£¬Ç°nÏîºÍΪSn£®ÒÑÖªµãp1£¨x1£¬S1£©£¬P2£¨x2£¬s2£©£¬¡­Pn£¨xn£¬sn£©¶¼ÔÚÖ±Ïßy=kx+bÉÏ£¨ÆäÖг£Êýb£¬kÇÒk¡Ù1£¬b¡Ù0£©£¬ÓÖyn=log
1
2
 xn£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{xn]ÊǵȱÈÊýÁУ»
£¨2£©Èôyn=18-3n£¬ÇóʵÊýk£¬bµÄÖµ£»
£¨3£©Èç¹û´æÔÚt¡¢s¡ÊN*£¬s¡ÙtʹµÃµã£¨t£¬yt£©ºÍµã£¨s£¬yt£©¶¼ÔÚÖ±Ïßy=2x+1ÉÏ£®ÎÊÊÇ·ñ´æÔÚÕýÕûÊýM£¬µ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öMµÄ×îСֵ£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©Ö¤Ã÷£º¡ßµãPn£¨xn£¬Sn£©£¬Pn+1£¨xn+1£¬Sn+1£©¶¼ÔÚÖ±Ïßy=kx+bÉÏ£¬
¡àSn=kxn+b£¬Sn+1=kxn+1+b
Á½Ê½Ïà¼õµÃSn+1-Sn=kxn+1-kxn£¬¼´xn+1=kxn+1-kxn£¬
¡ß³£Êýk¡Ù0£¬ÇÒk¡Ù1£¬¡à
xn+1
xn
=
k
k-1
£¨·ÇÁã³£Êý£©
¡àÊýÁÐ{xn]ÊǵȱÈÊýÁУ»
£¨2£©ÓÉyn=log0.5xn£¬µÃxn=£¨
1
2
£©yn=8n-6£¬
¡à
k
k-1
=8£¬µÃk=
8
7
£®
ÓÖPnÔÚÖ±ÏßÉÏ£¬µÃSn=kxn+b£¬
Áîn=1µÃb=S1-
8
7
x1=-
1
7
x1=-
8-5
7
£»
£¨3£©¡ßyn=log0.5xn£¬¡àµ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢µÈ¼ÛÓÚyn£¼0ºã³ÉÁ¢£®
¡ß´æÔÚt£¬s¡ÊN*£¬Ê¹µÃ£¨t£¬ys£©ºÍ£¨s£¬yt£©¶¼ÔÚy=2x+1ÉÏ£¬
¡àys=2t+1 ¢Ù£¬yt=2s+1 ¢Ú£®
¢Ù-¢ÚµÃ£ºys-yt=2£¨t-s£©£¬
¡ßs¡Ùt£¬¡à{yn}Êǹ«²îd=-2£¼0µÄµÈ²îÊýÁÐ
¢Ù+¢ÚµÃ£ºys+yt=2£¨t+s£©+2£¬
ÓÖys+yt=y1+£¨s-1£©•£¨-2£©+y1+£¨t-1£©•£¨-2£©=2y1-2£¨s+t£©+4
ÓÉ2y1-2£¨s+t£©+4=2£¨t+s£©+2£¬µÃy1=2£¨t+s£©-1£¾0£¬
¼´£ºÊýÁÐ{yn}ÊÇÊ×ÏîΪÕý£¬¹«²îΪ¸ºµÄµÈ²îÊýÁУ¬
ËùÒÔÒ»¶¨´æÔÚÒ»¸ö×îС×ÔÈ»ÊýM£¬Ê¹
yM¡Ý0
yM+1£¼0
£¬¼´
2(s+t)-1+(M-1)•(-2)¡Ý0
2(s+t)-1+M•(-2)£¼0

 ½âµÃt+s-
1
2
£¼M¡Üt+s+
1
2
£®
¡ßM¡ÊN*£¬¡àM=t+s£®
¼´´æÔÚ×ÔÈ»ÊýM£¬Æä×îСֵΪt+s£¬Ê¹µÃµ±n£¾Mʱ£¬xn£¾1ºã³ÉÁ¢£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø