题目内容
18.椭圆$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{7}$=1的焦点为F1,F2,点P在椭圆上,若|PF1|=4,则|PF2|等于( )A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 根据椭圆的定义即得结论.
解答 解:由椭圆的定义可知:|PF1|+|PF2|=2a=6,
∴|PF2|=6-|PF1|=6-4=2,
故选:B.
点评 本题考查椭圆的定义,注意解题方法的积累,属于基础题.
练习册系列答案
相关题目
13.过点M(-1,1)作斜率为$\frac{1}{2}$的直线与椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)相交于A,B两点,若M是线段AB的中点,则椭圆C的离心率为( )
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
3.与双曲线C:$\frac{{x}^{2}}{12}-\frac{{y}^{2}}{4}$=1共焦点,且过点(0,3)的椭圆的离心率为( )
A. | $\frac{2\sqrt{34}}{17}$ | B. | $\frac{\sqrt{6}}{3}$ | C. | $\frac{4\sqrt{7}}{7}$ | D. | $\frac{4}{5}$ |
10.已知x∈(-$\frac{π}{2}$,0),cos2$\frac{x}{2}$-sin2$\frac{x}{2}$=$\frac{4}{5}$,则tan2x等于( )
A. | $\frac{7}{24}$ | B. | -$\frac{7}{24}$ | C. | $\frac{24}{7}$ | D. | -$\frac{24}{7}$ |
8.若函数f(x)=sin ax+$\sqrt{3}$cos ax(a>0)的最小正周期为2,则函数f(x)的一个零点为( )
A. | -$\frac{π}{3}$ | B. | $\frac{2}{3}$ | C. | ($\frac{2}{3}$,0) | D. | (0,0) |